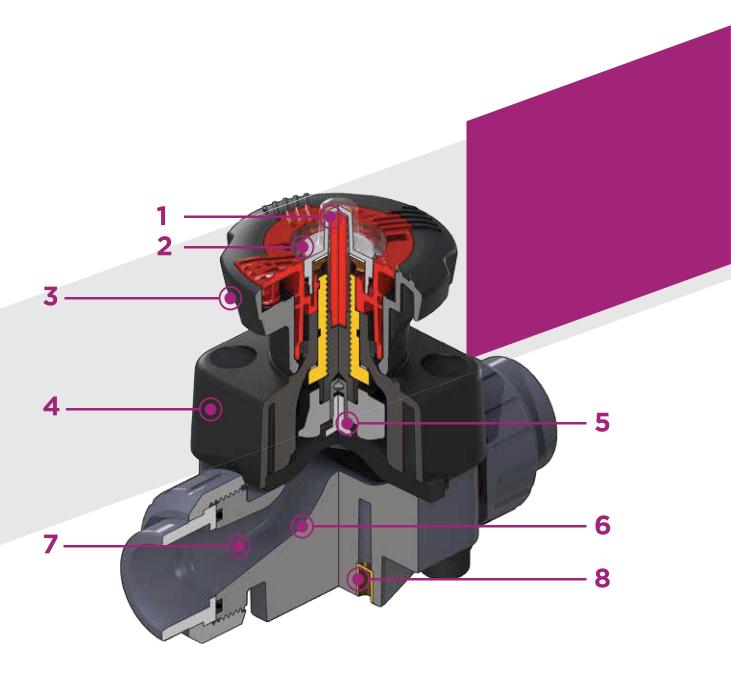
DK DN 15 À 65

PVDF

DK **DN 15 À 65**

La nouvelle vanne à membrane DK DIALOCK® est particulièrement indiquée pour la régulation et l'arrêt des fluides abrasifs ou contenant des impuretés. Le nouveau profil du corps optimise l'efficacité hydrodynamique en augmentant sensiblement le débit et elle garantit une excellente linéarité de la courbe de régulation. La DK présente des dimensions et un

La DK présente des dimensions et un poids nettement réduits.


Le nouveau volant est doté d'un mécanisme breveté de blocage instantané et ergonomique, qui permet de verrouiller n'importe quelle position.

VANNE À MEMBRANE À 2 VOIES DIALOCK®

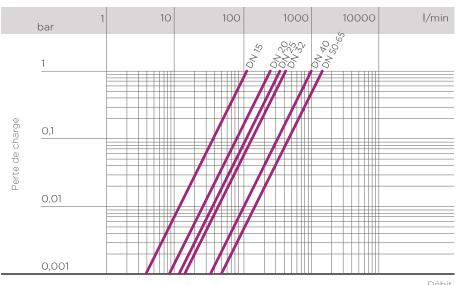
- Système d'assemblage par collage et par bridage.
- **Profil hydrodynamique optimisé :** coefficient de débit maximisé grâce à la nouvelle géométrie interne.
- Organes de manœuvre intérieurs en métal isolés du fluide et de l'environnement extérieur
- Modularité de la gamme: seulement 2 volants et 4 tailles de membranes et couvercles pour les 7 dimensions de la vanne
- Volant à hauteur fixe quelque soit la position, doté d'un indicateur optique gradué et protégé par un capuchon en PVC transparent avec joint torique d'étanchéité
- Vis de fixation du couvercle en acier INOX protégées de l'environnement extérieur par des bouchons en PE. Absence de parties métalliques exposées à l'environnement extérieur pour éviter tous les risques de corrosion
- Système d'étanchéité CDSA (Circular Diaphragm Sealing Angle) qui, grâce à la distribution uniforme de la pression de l'obturateur sur la membrane d'étanchéité, offre les avantages suivants :
 - diminution du couple de serrage des vis qui fixent le corps de la vanne à l'actionneur.
 - réduction des contraintes mécaniques pour tous les composants de la vanne (actionneur, corps et membrane).
- rinçage automatique de tout le profil intérieur, sans zone de rétention.
- minimisation du risque d'accumulation de dépôts, de contamination ou de détérioration de la membrane à cause de phénomènes de cristallisation.
- réduction du couple de manœuvre.

Spécifications technique	s
Fabrication	Vanne à membrane avec corps à débit maximisé et volant blocable DIALOCK®
Gamme de dimensions	DN 15 à 65
Pression nominale	PN 10 pour de l'eau à 20 °C
Plage de température	-20 °C à 120 °C
Standard d'accouplement	Soudage : EN ISO 10931. Compatibles avec les tubes selon EN ISO 10931
	Bridage : ISO 7005-1, EN ISO 10931, EN 558-1, DIN 2501, ANSI B16.5 CI.150
Références normatives	Critères de fabrication : EN ISO 16138, EN ISO 10931 Méthodes et conditions requises pour les tests : ISO 9393
	Critères d'installation : DVS 2201-1, DVS 2207-15, DVS 2208-1
Matériaux de la vanne	Corps: PVDF Couvercle et volant: PP-GR Capuchon indicateur de position PVC
Matériau de la membrane	EPDM, FPM, PTFE (sur demande, NBR)
Options de commande	Commande manuelle ; actionneur pneumatique

- Indicateur optique de position gradué à haute visibilité et protégé par un couvercle transparent muni d'un joint torique d'étanchéité.
- Personnalisation possible par le biais de la couronne d'identification afin d'identifier la vanne sur l'installation en fonction des exigences spécifiques.
- 3 Système Dialock*: nouveau volant de commande doté d'un mécanisme de blocage de la manœuvre immédiat et ergonomique, qui permet de régler et de bloquer la vanne sur plus de 300 positions.
- 4 Le volant et le couvercle sont réalisés en PP-GR à haute résistance mécanique et chimique: cela garantit une protection et une isolation complètes de toutes les parties métalliques intérieures contre le contact des agents extérieurs.
- 5 Raccordement à broche flottante entre la vis de commande et la membrane pour en augmenter l'étanchéité et la durée, en évitant les concentrations de contraintes.
- 6 Nouveau dessin intérieur du corps de la vanne : coefficient de débit nettement augmenté et pertes de charge réduites. L'efficacité atteinte a également

- permis de réduire les dimensions et le poids de la vanne.
- Linéarité de la régulation:
 les profils intérieurs de la
 vanne permettent également
 d'améliorer considérablement
 la courbe caractéristique de la
 vanne, pour obtenir un réglage
 particulièrement précis sur toute
 la course de l'obturateur.
- Support de fixation de la vanne intégré dans le corps doté d'écrous d'ancrage en métal, qui assure aussi une installation simple et rapide sur panneau ou mur avec la platine de montage PMDK (fournie en tant qu'accessoire).

DONNÉES TECHNIQUES


VARIATION DE LA PRESSION EN **FONCTION DE LA TEMPÉRATURE**

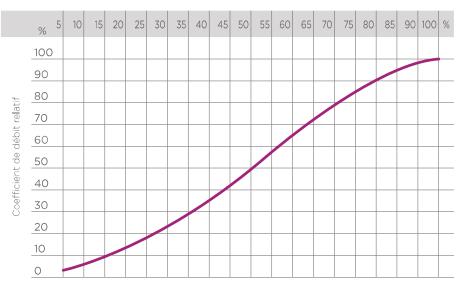
Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

Température de service

DIAGRAMME DES PERTES DE CHARGE

Débit

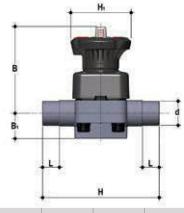
COEFFICIENT DE DÉBIT K_V100


Par coefficient de débit K,100, on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge Δp = 1 bar pour une position déterminée de la

Le tableau indique les valeurs K,100 pour une vanne complètement ouverte.

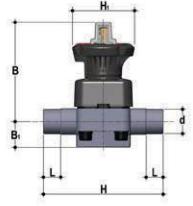
DN	15	20	25	32	40	50	65
K _v 100 l/min	112	261	445	550	1087	1648	1600

COURBE DE DÉBIT EN FONCTION DE L'OUVERTURE


Par coefficient de débit relatif, on entend l'évolution du débit en fonction de la course d'ouverture de la vanne.

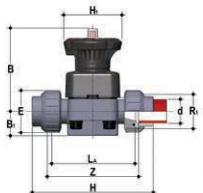
Taux d'ouverture de la vanne

Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.


DIMENSIONS

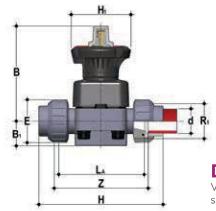
DKDF

Vanne à membrane DIALOCK $^{\$}$ avec embouts mâles pour soudage dans l'emboîture, série métrique


d	DN	PN	В	B ₁	Н	H ₁	L	g	Code EPDM	Code FPM	Code PTFE
20	15	10	102	25	124	80	16	497	DKDF020E	DKDF020F	DKDF020P
25	20	10	105	30	144	80	19	527	DKDF025E	DKDF025F	DKDF025P
32	25	10	114	33	154	80	22	756	DKDF032E	DKDF032F	DKDF032P
40	32	10	119	30	174	80	26	817	DKDF040E	DKDF040F	DKDF040P
50	40	10	147	35	194	120	31	1700	DKDF050E	DKDF050F	DKDF050P
63	50	10	172	46	224	120	38	2693	DKDF063E	DKDF063F	DKDF063P
75	65	10	172	46	284	120	44	2871	DKDF075E	DKDF075F	DKDF075P

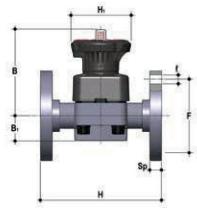
DKLDF

Vanne à membrane DIALOCK[®] avec limiteur de course et embouts mâles pour soudage dans l'emboîture, série métrique


d	DN	PN	В	B ₁	Н	H ₁	L	g	Code EPDM	Code FPM	Code PTFE
20	15	10	115	25	124	80	16	527	DKLDF020E	DKLDF020F	DKLDF020P
25	20	10	118	30	144	80	19	557	DKLDF025E	DKLDF025F	DKLDF025P
32	25	10	127	33	154	80	22	786	DKLDF032E	DKLDF032F	DKLDF032P
40	32	10	132	30	174	80	26	847	DKLDF040E	DKLDF040F	DKLDF040P
50	40	10	175	35	194	120	31	1760	DKLDF050E	DKLDF050F	DKLDF050P
63	50	10	200	46	224	120	38	2753	DKLDF063E	DKLDF063F	DKLDF063P
75	65	10	200	46	284	120	44	2931	DKLDF075E	DKLDF075F	DKLDF075P

DKUIF

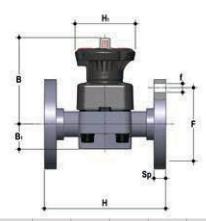
Vanne à membrane $\mathsf{DIALOCK}^*$ avec embouts union femelles pour soudage dans l'emboîture, série métrique


d	DN	PN	В	B ₁	Е	Н	H ₁	L_A	R ₁	Z	g	Code EPDM	Code FPM	Code PTFE
20	15	10	102	25	41	128	80	90	1"	101	551	DKUIF020E	DKUIF020F	DKUIF020P
25	20	10	105	30	50	150	80	108	1" 1/4	119	636	DKUIF025E	DKUIF025F	DKUIF025P
32	25	10	114	33	58	163	80	116	1" 1/2	127	905	DKUIF032E	DKUIF032F	DKUIF032P
40	32	10	119	30	72	184	80	134	2"	145	1077	DKUIF040E	DKUIF040F	DKUIF040P
50	40	10	147	35	79	210	120	154	2" 1/4	165	1989	DKUIF050E	DKUIF050F	DKUIF050P
63	50	10	172	46	98	248	120	184	2" 3/4	195	3235	DKUIF063E	DKUIF063F	DKUIF063P

DKLUIF

Vanne à membrane DIALOCK[®] avec limiteur de course et embouts union femelles pour soudage dans l'emboîture, série métrique

d	DN	PN	В	B ₁	Е	Н	H ₁	L _A	R ₁	Z	g	Code EPDM	Code FPM	Code PTFE
20	15	10	115	25	41	128	80	90	1"	101	581	DKLUIF020E	DKLUIF020F	DKLUIF020P
25	20	10	118	30	50	150	80	108	1" 1/4	119	666	DKLUIF025E	DKLUIF025F	DKLUIF025P
32	25	10	127	33	58	163	80	116	1" 1/2	127	935	DKLUIF032E	DKLUIF032F	DKLUIF032P
40	32	10	132	30	72	184	80	134	2"	145	1107	DKLUIF040E	DKLUIF040F	DKLUIF040P
50	40	10	175	35	79	210	120	154	2" 1/4	165	2049	DKLUIF050E	DKLUIF050F	DKLUIF050P
63	50	10	200	46	98	248	120	184	2" 3/4	195	3295	DKLUIF063E	DKLUIF063F	DKLUIF063P

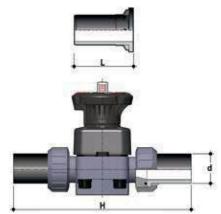


DKOF

Vanne à membrane DIALOCK® à brides fixes, perçage PN10/16. Écartement selon EN 558-1

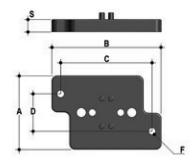
d	DN	PN	В	B ₁	f	F	Н	H ₁	Sp	U	g	Code EPDM	Code FPM	Code PTFE
20	15	10	102	25	14	65	130	80	13,5	4	810	DKOF020E	DKOF020F	DKOF020P
25	20	10	105	30	14	75	150	80	13,5	4	862	DKOF025E	DKOF025F	DKOF025P
32	25	10	114	33	14	85	160	80	14	4	1141	DKOF032E	DKOF032F	DKOF032P
40	32	10	119	30	18	100	180	80	14	4	1532	DKOF040E	DKOF040F	DKOF040P
50	40	10	147	35	18	110	200	120	16	4	2481	DKOF050E	DKOF050F	DKOF050P
63	50	10	172	46	18	125	230	120	16	4	3690	DKOF063E	DKOF063F	DKOF063P
75	65	10	225	55	18	145	290	120	21	4	4263	DKOF075E	DKOF075F	DKOF075P

Version DKLOF disponible sur demande


DKOAF

Vanne à membrane DIALOCK $^{\!8}$ à brides fixes, perçage ANSI B16.5 cl. 150 #FF

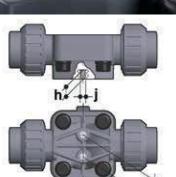
Taille	DN	PN	В	B ₁	f	F	Н	H ₁	Sp	U	g	Code EPDM	Code FPM	Code PTFE
1/2"	15	10	102	25	14	60,3	108	80	13,5	4	810	DKOAF012E	DKOAF012F	DKOAF012P
3/4"	20	10	105	30	15,7	69,9	150	80	13,5	4	862	DKOAF034E	DKOAF034F	DKOAF034P
1"	25	10	114	33	15,7	79,4	160	80	14	4	1141	DKOAF100E	DKOAF100F	DKOAF100P
1" 1/4	32	10	119	30	15,7	88,9	180	80	14	4	1532	DKOAF114E	DKOAF114F	DKOAF114P
1" 1/2	40	10	147	35	15,7	98,4	200	120	16	4	2481	DKOAF112E	DKOAF112F	DKOAF112P
2"	50	10	172	46	19	120,7	230	120	16	4	3690	DKOAF200E	DKOAF200F	DKOAF200P
75	65	10	172	46	19	139,7	290	120	21	4	4263	DKOF075E	DKOF075F	DKOF075P


Version DKLOAF disponible sur demande

ACCESSOIRES

Q/BBF-LCollets en PVDF à embout long, pour soudage bout à bout

d	DN	L	Н	SDR	Code
20	15	95	280	21	QBBFL21020
25	20	95	298	21	QBBFL21025
32	25	95	306	21	QBBFL21032
40	32	95	324	21	QBBFL21040
50	40	95	344	21	QBBFL21050
63	50	95	374	21	QBBFL21063


PMDK

Platine de montage

d	DN	А	В	С	D	F	S	Code
20	15	65	97	81	33	5,5	11	PMDK1
25	20	65	97	81	33	5,5	11	PMDK1
32	25	65	97	81	33	5,5	11	PMDK1
40	32	65	97	81	33	5,5	11	PMDK2
50	40	65	144	130	33	6,5	11	PMDK2
63	50	65	144	130	33	6,5	11	PMDK2
75	65	65	144	130	33	6,5	11	PMDK2

COLLIERS ET SUPPORTAGE

Manuelles ou motorisées, tous les vannes doivent, dans de nombreuses applications, être supportées.

La série des vannes DK est munie de supports intégrés qui permettent un ancrage direct sur le corps de la vanne sans devoir recourir à d'autres composants.

Pour les installations murales ou sur panneau, il est possible d'employer la platine de montage PMDK prévue à cet effet, fournie comme accessoire, qui doit être tout d'abord fixée à la vanne.

La platine PMDK permet aussi d'aligner la vanne DK avec les colliers FIP de type ZIKM.

d	DN	h	1	j
20	15	10	25	M6
25	20	10	25	M6
32	25	10	25	M6
40	32	10	25	M6
50	40	13	44,5	M8
63	50	13	44,5	M8
75	65	13	44,5	M8

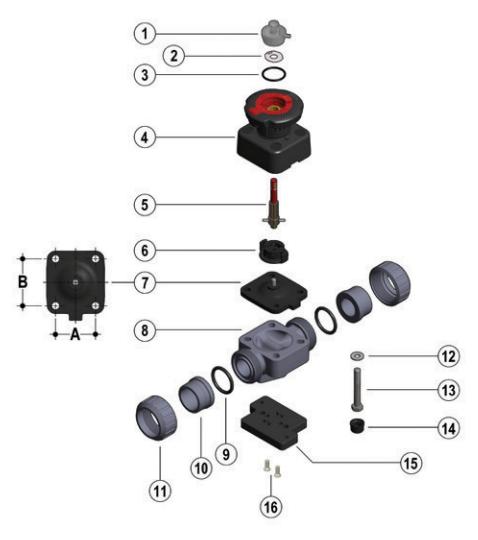
PERSONNALISATION

La vanne DK DN 15 à 65 DIALOCK® est prévue pour être personnalisée au moyen d'une couronne d'identification en PVC blanc.

La couronne (B), insérée à l'intérieur du bouchon de protection transparent (A), peut être ôtée et, une fois renversée, utilisée pour indiquer sur les vannes les numéros de série d'identification ou des indications de service comme, par exemple, la fonction de la vanne à l'intérieur de l'installation, le fluide transporté, mais aussi des informations spécifiques pour le service clientèle, comme le nom du client ou la date et le lieu où l'installation a été effectuée. Le capuchon de protection transparent résistant à l'eau et muni d'un joint torique préserve la pastille personnalisée contre les détériorations.

Pour avoir accès à la couronne d'identification, veiller ce que le volant se trouve en position de déblocage et suivre la démarche indiquée ci-dessous :

- 1) Tourner à fond le capuchon de protection transparent dans le sens antihoraire (fig. 1) et l'ôter en le tirant vers le haut en insérant, si besoin est un tournevis dans la fissure prévue à cet effet (C) pour faciliter l'opération (fig. 2).
- 2) Retirer la platine à l'intérieur du capuchon de protection transparent et procéder à la personnalisation (fig. 3).
- 3) Remonter le tout en veillant à ce que le joint torique d'étanchéité du capuchon de protection ne ressorte pas de son logement (fig. 4).



COMPOSANTS

VUE ÉCLATÉE DN 15 À 50

DN	15	20	25	32	40	50	65
А	40	40	46	46	65	78	78
В	44	44	54	54	70	82	82

- 1 · Capuchon de protection transparent (PVC 1)*
- 2 · Couronne d'identification (PVC-U 1)
- **3** · Joint torique (EPDM 1)
- 4 · Bloc de manœuvre (PP-GR / PVDF - 1)
- 5 · Tige filetée Indicateur (Acier INOX - 1)

- **6** · Compresseur (PA-GR IXEF® 1)
- 7 · Membrane d'étanchéité (EPDM, FPM, PTFE - 1)*
- 8 · Corps de vanne (PVDF 1)*
- 9 · Joint d'étanchéité torique du collet (EPDM-FPM - 2)*
- $10 \cdot \text{Manchon (PVDF 2)}^*$
- 11 · Écrou union (PVDF 2)*

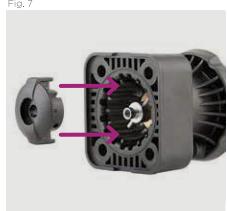
- **12** · Rondelle (Acier INOX 4)
- 13 · Boulon (Acier INOX 4)
- 14 · Bouchon de protection (PE 4)
- 15 · Platine de montage (PP-GR 1)**
- **16** · Vis (Acier INOX 2)**

Le matériau du composant et la quantité fournie sont indiqués entre parenthèses

^{*} Pièces de rechange

^{**} Accessoires

DÉMONTAGE


- 1) Isoler la vanne de la ligne (décharger la pression et vider le tube)
- 2) Si besoin est, débloquer le volant de manœuvre en appuyant vers le bas (fig. 5) et ouvrir complètement la vanne en tournant le volant dans le sens anti-horaire
- 3) Dévisser complètement les écrous union (11) et retirer latéralement la vanne.
- 4) Enlever les bouchons de protection (14) et retirer les boulons (13) avec leurs rondelles (12).
- 5) Séparer le corps de la vanne (8) du groupe de manœuvre (4).
- 6) Tourner le volant de manœuvre dans le sens horaire de manière à dégager la tige filetée (5), le compresseur (6) et la membrane (7)
- 7) Dégager la membrane (7) et ôter l'obturateur (6).

MONTAGE

- 1) Insérer le compresseur (6) sur la tige filetée (5) en l'alignant correctement avec la fiche de référence de la tige.
- Visser la membrane (7) sur la tige filetée (5).
- 3) Lubrifier la tige filetée (5) et l'insérer dans le groupe de manœuvre (4), puis tourner le volant dans le sens anti-horaire de manière à visser complètement la tige (5). Veiller attentivement à ce que le compresseur (6) et la membrane soient correctement alignés avec les logements présents dans le groupe de manœuvre (4) (fig. 7).
- Monter le groupe de manœuvre (4) sur le corps de la vanne (8) et visser les boulons (13) avec leurs rondelles (12).
- 5) Serrer les boulons (13) de façon équilibrée (en croix) en respectant les couples de serrage suggérés sur la notice d'instruction.
- 6) Remonter les bouchons de protection (14)
- 7) Placer la vanne entre les manchons (10) et serrer les écrous union (11), en veillant à ce que les joints d'étanchéité toriques du collet (9) ne sortent pas de leur logement.
- 8) Bloquer, si besoin est, le volant de manœuvre en le saisissant et en le tirant vers le haut (fig. 6).

Fig. 7

Remarque : pendant les opérations de montage, il est conseillé de lubrifier la tige filetée.

À ce propos, il est rappelé que les huiles minérales, agressives pour le caoutchouc EPDM, sont déconseillées.

INSTALLATION

Pour procéder à l'installation, suivre attentivement les instructions suivantes : (instructions valables pour les versions à embouts union 3 pièces). La vanne peut être installée dans n'importe quelles position et direction.

- Vérifier que les tubes auxquels la vanne doit être raccordée sont alignés, de manière à éviter les contraintes mécaniques sur les raccordements filetés de la vanne.
- 2) Procéder au dévissage des écrous union (11) et les enfiler sur les tronçons de tube.
- 3) Procéder au collage, au soudage ou au vissage des manchons (10) sur les tronçons de tube.
- 4) Placer le corps de la vanne entre les manchons, en veillant à ce que les joints d'étanchéité toriques du collet (9) ne sortent pas de leur logement.
- 5) Serrer complètement les écrous union (11).
- 6) Si cela est nécessaire, supporter le tube avec des colliers FIP ou bien avec le support intégré dans la vanne (voir le paragraphe « Colliers et supportage »).

Remarque : Avant de mettre la vanne en service, s'assurer que les boulons du corps de la vanne (13) sont serrés correctement aux couples suggérés.

BLOCAGE DE LA MANŒUVRE

La vanne DK est dotée du système de blocage du volant DIALOCK® qui permet de bloquer la manœuvre de la vanne.

Le système peut être utilisé tout simplement en soulevant le volant une fois que la position désirée est atteinte (fig. 8).

Pour débloquer la manœuvre, il suffit de remettre le volant dans la position précédente en appuyant vers le bas (fig. 6).

.Quand le système est en position de blocage, il est également possible d'installer un cadenas pour préserver l'installation contre les manipulations (fig. 9).

LIMITEUR DE COURSE

La vanne à membrane en version DKL est munie d'un système de régulation de la course du volant qui permet de régler les débits mini et maxi et de préserver la membrane contre toute compression excessive lors de la fermeture.

Le système permet de modifier la la plage de manœuvre de la vanne en agissant sur deux réglages indépendants qui déterminent des butées mécaniques à la fermeture et à l'ouverture. La vanne est vendue avec les limiteurs de course placés de manière à ne pas limiter la course, tant à la fermeture qu'à l'ouverture.

Pour accéder aux réglages, il est nécessaire d'ôter le capuchon de protection transparente(A) comme cela a été décrit précédemment (voir le paragraphe « Personnalisation »).

- 1) Tourner le volant dans le sens horaire, de manière à atteindre le débit minimal désiré ou la position de fermeture.
- 2) Serrer à fond l'écrou (D) et le bloquer dans cette position en serrant le contre-écrou (E). Au cas où l'on voudrait exclure la fonction de limitation de la course en fermeture, dévisser complètement les écrous (D et E). De cette manière, la vanne atteindra le point de fermeture complète.
- 3) Remonter le capuchon de protection transparent en veillant à ce que le joint torique d'étanchéité ne ressorte pas de son logement.

- 1) Tourner le volant dans le sens anti-horaire de manière à atteindre le débit maximal désiré.
- 2) Tourner la poignée (F) dans le sens anti-horaire jusqu'à ce que l'on atteigne la butée d'arrêt. La couronne montre le sens de rotation de la rondelle pour obtenir un débit maximal inférieur ou supérieur.
 - Au cas où il serait nécessaire de limiter la course à l'ouverture, tourner plusieurs fois la poignée (F) dans le sens horaire. De cette manière, la vanne atteindra le point d'ouverture complète.
- 3) Remonter le capuchon de protection transparent en veillant à ce que le joint torique d'étanchéité ne ressorte pas de son logement.

