TUBES, RACCORDS ET VANNES MANUELLES

INDEX

PP-H Caractéristiques générales p. 2 Références normatives p. 4 Approbations et marques de qualité p. 6 p. 7 Propriétés principales Instructions pour le soudage dans l'emboîture p. 8 Instructions pour soudage bout à bout p. 11 **Tube ISO-UNI** Tube à pression p. 18 Raccords pour soudage dans l'emboîture Raccords série métrique ISO-UNI p. 28 Raccords d'adaptation ISO-BSP p. 42 Raccords pour soudage bout à bout Raccords série métrique ISO-UNI p. 54 Raccords d'adaptation ISO-BSP p. 74 VKD DN 10 à 50 p. 80 Robinet à boisseau sphérique à 2 voies DUAL BLOCK® VKD DN 65 à 100 p. 96 Robinet à boisseau sphérique à 2 voies DUAL BLOCK® VKR DN 10 à 50 Vanne de réglage à boisseau sphérique DUAL BLOCK® p. 110 **TKD DN 10 à 50** Robinet à boisseau sphérique à 3 voies DUAL BLOCK® p. 124 SR DN 15 à 50 Clapet de retenue à bille p. 140 FK DN 40 à 400 Vanne à papillon p. 148 **DK DN 15 à 65** Vanne à membrane à 2 voies DIALOCK® p. 168 VM DN 80 à 100 p. 182 Vanne à membrane **CM DN 12 à 15** Vanne à membrane compacte p. 192 **RV DN 15 à 100** Filtre à tamis p. 202 **VR DN 15 à 80** Clapet de retenue p. 212 Légende p. 221

TUBES, RACCORDS ET VANNES MANUELLES EN PP-H

PP-H CARACTÉRISTIQUES GÉNÉRALES

Le polypropylène est une résine thermoplastique, partiellement cristalline, qui appartient à la famille des polyoléfines. Le PP est le résultat de la polymérisation du propylène (C₃H₆) effectuée à l'aide de catalyseurs. Pour l'emploi dans les systèmes de tuyauterie, la variante Polypropylène Homopolymère, PP-H. de la dernière génération, offre d'excellentes performances à une température de service jusqu'à 100 °C et une haute résistance à l'agression chimique, grâce aux excellentes caractéristiques physiques et thermiques de la résine.

La ligne PP-H en Polypropylène Homopolymère de la dernière génération se compose d'une gamme complète de tubes, raccords et vannes pour la réalisation de réseaux sous pression process industriel et de service à des température allant jusqu'à 100°C.

L'ensemble de la ligne est réalisé en utilisant des résines de Polypropylène Homopolymère MRS 100 (PP-H 100) selon la classification DIN 8077-8078, DIN 16962 et approuvées par le DIBt - Deutsches Institut für Bautechnik pour l'utilisation dans les processus industriels.

Les principales propriétés des résines homopolymères de la dernière génération sont les suivantes :

• Haute résistance chimique :

non content de garantir une excellente résistance chimique, en particulier vis-à-vis des halogènes et des solutions alcalines, l'emploi de résines PP-H permet, grâce à l'emploi d'adjuvants particuliers, de maintenir de hautes caractéristiques mécaniques, même pour le transport de détergents et de produits chimiques similaires.

Les résines PP-H offrent une compatibilité totale même pour le transport des eaux potables, des eaux déminéralisées et des eaux thermales curatives et kinésithérapique.

• Excellente stabilité thermique :

surtout dans la plage de températures intermédiaires entre 10 °C et 80 °C, typique des applications industrielles, le PP-H garantit une excellente résistance mécanique et aux chocs avec des facteurs de sécurité élevés.

• Durée dans le temps :

les résines PP-H présentent une haute valeur de charge de rupture circonférentielle (Minimum Required Strenght MRS ≥ 10.0 MPa à 20°C) et permettent aux installations de durer extrêmement longtemps, sans détériorations physico-mécaniques particulières.

Densité	
Méthode d'essai	ISO 1183
Unité de mesure	g/cm ³
Valeur	Vannes/raccords/tubes : 0,9
I II I CLE III CANEL CO	
Indice de fluidité (MFI 19	
Méthode d'essai	ISO 1133
Unité de mesure	g/(10 min)
Valeur	Vannes/raccords/tubes : 0,5
Module d'élasticité	
Méthode d'essai	ASTM D 790
Unité de mesure	MPa = N/mm ²
Valeur	Vannes/raccords/tubes : 1300
Résistance IZOD avec en	
Méthode d'essai	ASTM D256
Unité de mesure	J/m
Valeur	Vannes/raccords/tubes : 150
Allongement à la rupture	
Méthode d'essai	ISO 527
Unité de mesure	%
Valeur	Vannes/raccords/tubes : >50
	Transcortacy tubes 00
Dureté Rockwell	
Méthode d'essai	ASTM D785
Unité de mesure	R
Valeur	Vannes/raccords/tubes : 100
Résistance à la traction	
Méthode d'essai	ISO 527
Unité de mesure	MPa = N/mm ²
Valeur	Vannes/raccords/tubes : 30
Température de distorsion	
Méthode d'essai	ASTM D648
Unité de mesure	°C
	1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
Valeur	Vannes/raccords/tubes : 96
Valeur Conductibilité thermique Méthode d'essai	
Conductibilité thermique	à 20° C
Conductibilité thermique Méthode d'essai	e à 20° C DIN 5216
Conductibilité thermique Méthode d'essai Unité de mesure Valeur	DIN 5216 W/(m K) Vannes/raccords/tubes : 0,22
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation	DIN 5216 W/(m K) Vannes/raccords/tubes : 0,22 thermique linéaire
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai	DIN 5216 W/(m K) Vannes/raccords/tubes : 0,22 thermique linéaire DIN 53752
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure	DIN 5216 W/(m K) Vannes/raccords/tubes : 0,22 thermique linéaire DIN 53752 m/(m °C)
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur	DIN 5216 W/(m K) Vannes/raccords/tubes : 0,22 thermique linéaire DIN 53752
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène	DIN 5216 W/(m K) Vannes/raccords/tubes : 0,22 thermique linéaire DIN 53752 m/(m °C)
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène Méthode d'essai	DIN 5216 W/(m K) Vannes/raccords/tubes : 0,22 thermique linéaire DIN 53752 m/(m °C)
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène	b à 20° C DIN 5216 W/(m K) Vannes/raccords/tubes : 0,22 thermique linéaire DIN 53752 m/(m °C) Vannes/raccords/tubes : 16 x 10 ⁻⁵
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène Méthode d'essai	DIN 5216 W/(m K) Vannes/raccords/tubes: 0,22 thermique linéaire DIN 53752 m/(m °C) Vannes/raccords/tubes: 16 x 10-5 ASTM D2863
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène Méthode d'essai Unité de mesure Valeur	DIN 5216 W/(m K) Vannes/raccords/tubes: 0,22 thermique linéaire DIN 53752 m/(m °C) Vannes/raccords/tubes: 16 x 10-5 ASTM D2863 % Vannes/raccords/tubes: 17,5
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène Méthode d'essai Unité de mesure Valeur Résistivité électrique suj	DIN 5216 W/(m K) Vannes/raccords/tubes: 0,22 thermique linéaire DIN 53752 m/(m °C) Vannes/raccords/tubes: 16 x 10-5 ASTM D2863 % Vannes/raccords/tubes: 17,5 perficielle
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène Méthode d'essai Unité de mesure Valeur Résistivité électrique sur Méthode d'essai	DIN 5216 W/(m K) Vannes/raccords/tubes: 0,22 thermique linéaire DIN 53752 m/(m °C) Vannes/raccords/tubes: 16 x 10-5 ASTM D2863 % Vannes/raccords/tubes: 17,5 perficielle ASTM D257
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène Méthode d'essai Unité de mesure Valeur Résistivité électrique sui Méthode d'essai Unité de mesure	DIN 5216 W/(m K) Vannes/raccords/tubes: 0,22 thermique linéaire DIN 53752 m/(m °C) Vannes/raccords/tubes: 16 x 10-5 ASTM D2863 % Vannes/raccords/tubes: 17,5 cerficielle ASTM D257 ohm
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène Méthode d'essai Unité de mesure Valeur Résistivité électrique sur Méthode d'essai Unité de mesure Valeur	DIN 5216 W/(m K) Vannes/raccords/tubes: 0,22 thermique linéaire DIN 53752 m/(m °C) Vannes/raccords/tubes: 16 x 10-5 ASTM D2863 % Vannes/raccords/tubes: 17,5 perficielle ASTM D257
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène Méthode d'essai Unité de mesure Valeur Résistivité électrique sur Méthode d'essai Unité de mesure Valeur Inflammabilité	DIN 5216 W/(m K) Vannes/raccords/tubes: 0,22 thermique linéaire DIN 53752 m/(m °C) Vannes/raccords/tubes: 16 x 10-5 ASTM D2863 % Vannes/raccords/tubes: 17,5 Derficielle ASTM D257 ohm Vannes/raccords/tubes: >10 ¹³
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène Méthode d'essai Unité de mesure Valeur Résistivité électrique sur Méthode d'essai Unité de mesure Valeur Inflammabilité Méthode d'essai	DIN 5216 W/(m K) Vannes/raccords/tubes: 0,22 thermique linéaire DIN 53752 m/(m °C) Vannes/raccords/tubes: 16 x 10-5 ASTM D2863 % Vannes/raccords/tubes: 17,5 Derficielle ASTM D257 ohm Vannes/raccords/tubes: >10 ¹³
Conductibilité thermique Méthode d'essai Unité de mesure Valeur Coefficient de dilatation Méthode d'essai Unité de mesure Valeur Taux limite d'oxygène Méthode d'essai Unité de mesure Valeur Résistivité électrique sur Méthode d'essai Unité de mesure Valeur Inflammabilité	DIN 5216 W/(m K) Vannes/raccords/tubes: 0,22 thermique linéaire DIN 53752 m/(m °C) Vannes/raccords/tubes: 16 x 10-5 ASTM D2863 % Vannes/raccords/tubes: 17,5 Derficielle ASTM D257 ohm Vannes/raccords/tubes: >10 ¹³

RÉFÉRENCES NORMATIVES

La gamme PP-H (100) est produite suivant les plus hauts standards de qualité et dans le respect complet des contraintes environnementales imposées par les lois en vigueur et conformément à la norme **ISO 14001**. Tous les produits

sont réalisés conformément au système de garantie de la qualité selon la norme **ISO 9001**.

ANSI B16.5 cl.150

Brides de tuyaux et raccords bridés - NPS 1/2 à NPS 24 mm / pouce

• ASTM D 4101-06

Composé de polypropylène conforme à la classification PP0110B56000

• BS 10

Spécifications pour brides et boulons pour tubes, vannes et raccords.

BS 1560

Brides pour tubes, vannes et raccords (conception selon classe). Brides en acier, fonte et alliages de cuivre. Spécification pour brides en acier

BS 4504

Brides pour tubes, vannes et raccords (conception selon PN)

• DIN 2501

Brides, dimensions

• DIN 2999

Vissage Whitworth pour tuyaux filetés et raccords

• DIN 8077-8078

Tuyaux en PP-H, dimensions série métrique.

• DIN 16962

Raccords en PP-H par soudage dans l'emboîture et bout à bout, dimensions

• DIN 16963

Raccords de tuyaux et parties de conduites pour le transport des fluides sous pression en PEAD.

• DVS 2202-1

Défauts des assemblages soudés en PP-H, caractéristiques, descriptions et évaluation.

• DVS 2207-11

Soudages dans l'emboîture et bout à bout de composants en PP-H.

• DVS 2208-1

Machines et outils pour le soudage par élément chauffant de tubes, parties de tubes et panneaux.

• EN 558-1

Robinetterie industrielle - Dimensions face-à-face et face-à-axe - Appareils de robinetterie désignés PN et Class

• EN 1092-1

Brides et leurs assemblages - Brides circulaires pour tubes, appareils de robinetterie, raccords et accessoires, désignées PN - Partie 1 : brides en acier

• EN ISO 15494

Systèmes de canalisations en PP-H pour les applications industrielles.

• ISO 228-

Filetages de tuyauterie pour raccordement sans étanchéité dans le filet

• ISO 5211

Robinetterie industrielle - Raccordement des actionneurs à fraction de tour

• ISO 7005-1

Brides métalliques ; partie 1 : brides en acier.

• JIS B 2220

Brides pour tubes métalliques.

• UNI 11318

Soudage dans l'emboîture de composants en PP-H.

• UNI 11397

Soudages bout à bout de composants en PP-H.

APPROBATIONS ET MARQUES DE QUALITÉ

DIB

• DIBt

Les vannes FIP en PP-H ont été testées et certifiées par le DIBt (Deutsches Institut für Bautechnik).

• GOST-R - EAC

Les vannes FIP en PP-H sont certifiées GOST-R et EAC, en accord avec les réglementations russes pour la céquilité l'Item 19 réglementations russes pour la sécurité, l'hygiène et la qualité.

• RINA

Les vannes FIP en PP-H sont reconnues adéquates pour le convoyage, le traitement des eaux sanitaires et de conditionnement à bord de bateaux et autres unités classifiées par RINA.

TA-Luft • TA-Luft

Les vannes FIP en PP-H ont été testées et certifiées selon « TA-Luft » par MPA Stuttgart, conformément aux Technical Instructions on Air Quality Control TA-Luft/ VDI 2440.

UKR SEPRO

Les vannes FIP en PP-H sont certifiées conformes aux réglementations ukrainiennes pour la sécurité et la qualité.

PRINCIPALES PROPRIÉTÉS

Propriétés du PP-H		Avantages
Résistance thermique	1	- plage d'utilisation 0-100 °C (voir les courbes de régression pression / température)
Surfaces peu rugueuses		 hauts coefficients de débit (surfaces intérieures très lisses) pertes de charge constantes dans le temps faible risque de bouchage du aux incrustations interaction limitée avec les fluides transportés
Résistance chimique		adapté pour le transfert de substances chimiques (excellents résultats vis-à-vis des sels et des solutions fortement alcalines)
Résistance à l'abrasion		- coûts opérationnels extrêmement réduits grâce à la longue espérance de vie en service
Isolant	4	 non conducteur (indifférent à la corrosion galvanique) élimination des problèmes de condensation perte de chaleur limitée
Non toxique	B	- physiologiquement sûr - compatibilité environnementale
Facilité d'assemblage (polyfusion à chaud dans l'emboîture, bout à bout et par électrofusion, bridage et filetage)	23	 coûts d'installation réduits vaste possibilité de raccordement avec des accessoires et appareillages
Masse spécifique basse		- réduction des coûts de transport - déplacement et installation faciles

INSTRUCTIONS POUR LE SOUDAGE DANS L'EMBOÎTURE

Le soudage thermique dans l'emboîture prévoit la fusion du tube dans l'emboîture du raccord. Le raccordement est réalisé en mettant simultanément en fusion les surfaces mâle et femelle à souder au moyen d'appareils de chauffe manuels ou automatiques. Ces machines sont, dans leur forme la plus simple, constituées par une plaque thermique sur laquelle sont montées des douilles de fusion. Un système de chauffe adéquat, muni d'un contrôleur de température automatique complète l'appareillage. Aucun matériau d'apport n'est requis pour effectuer ce type de soudage. Le soudage dans l'emboîture n'abaisse pas le niveau de résistance chimique du polypropylène et il n'altère pas des qualités de résistance à la pression intérieure des tube et des raccords accouplés. Le tube qui doit être soudé est coupé, chanfreiné et, éventuellement, raclé. La surface extérieure du tube et la surface intérieure du raccord doivent être soigneusement nettoyées et, sur les surfaces extérieures du tube et du raccord, il est utile de tracer un repère pour éviter de tourner pendant que l'on exécute le raccordement. L'étape suivante consiste à insérer le tube dans la douille femelle et le raccord sur la douille mâle et de les y maintenir pendant le temps de chauffe nécessaire ; ce laps de temps étant passé, il faut retirer rapidement les éléments des douilles et insérer le tube dans le raccord sur toute la longueur d'insertion précédemment établie, en respectant l'alignement des repères. Il est ensuite nécessaire de maintenir les éléments raccordés pendant 15 secondes environ puis de les laisser refroidir à température ambiante sans recourir à la ventilation ou à l'immersion dans l'eau.

La méthode illustrée dans le paragraphe suivant s'applique seulement dans la réalisation de soudures thermiques qui prévoient l'emploi d'appareils de soudage de type manuel (fig. 1). L'utilisation d'appareils automatiques et semi-automatiques, particulièrement indiquée pour les diamètres de plus de 63 mm, comporte une connaissance spécifique de l'outil, pour l'emploi duquel, il est conseillé de respecter les indications données par la fabricant.

- 1) Sélectionner les douilles mâle et femelle pour le diamètre requis, les insérer et les fixer sur le miroir chauffant (fig. 2).
- 2) Nettoyer soigneusement les surfaces de contact (fig. 3). En ce qui concerne le choix du type de liquide détergent, il est recommandé de recourir à des produits conseillés directement chez des producteurs de ce secteur : le trichloroéthane, le chlorothène, l'alcool éthylique et l'alcool isopropylique sont aptes à l'emploi.
- 3) Régler la température de l'élément chauffant. Pour une jonction correcte, la température doit êtr réglée entre 250 et 270 °C.
- 4) Quand l'appareillage a atteint le niveau thermique sélectionné sur le thermostat, vérifier la température de la surface du miroir chauffant avec des cannes pyromé-

Fig. 5

triques prévues à cet effet.

- 5) Couper le tube perpendiculairement à son axe, chanfreiner et charioter si nécessaire (fig. 4-5). Le diamètre et la longueur à charioter et la profondeur du chanfrein devront correspondre aux valeurs indiquées dans le tableau « Dimensions d'alésage et de chanfreinage du tube ». L'opération de chanfreinage peut être exécutée aussi bien après le chariotage que pendant celui-ci, en utilisant des outils calibrés prévus à cet effet.
- 6) Marquer la longueur d'insertion L1 sur le tube (fig. 6) en se référant aux valeurs indiquées dans le tableau « Longueur d'insertion du tube » et veillant bien à ce que l'éventuel chariotage s'effectue sur toute la longueur précitée.
- 7) Marquer sur les surfaces extérieures du tube et du raccord un repère longitudinal pour les empêcher de tourner lors de l'assemblage (fig. 7).
- 8) Nettoyer soigneusement aussi bien le raccord que le tube en éliminant les traces de graisse et de poussière éventuellement présentes sur les surfaces à souder (fig. 8).
- 9) Après s'être assuré que la température de la surface du miroir chauffant s'est stabilisée à la valeur désirée, introduire le tube dans la douille femelle et le raccord sur la douille mâle (fig. 9). En maintenant les éléments emboîtés avec les douilles (raccord inséré en butée, tube sur toute la longueur de grattage), attendre un temps de chauffe nécessaire indiqué dans le tableau « Temps de chauffe, soudage et refroidissement ».
- 10) Le temps nécessaire de chauffe s'étant écoulé, séparer rapidement les éléments des douilles et insérer le tube dans le raccord sur toute la longueur d'insertion L1 précédemment marquée (fig. 10). Ne pas tourner le tube dans le raccord, aligner soigneusement les repères longitudinaux (fig. 11).
- 11) Maintenir les éléments accouplés pendant le temps de soudage indiqué dans le tableau « Temps de chauffe, soudage et refroidissement » et les laisser refroidir lentement à température ambiante (jamais par immersion dans l'eau ou par ventilation forcée).
- 12) Quand les surfaces intérieures et extérieures sont suffisamment refroidies, mettre l'installation sous pression pour l'épreuve hydraulique des jonctions.

Fig. 8

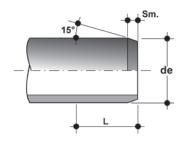


Fig. 10

DIMENSIONS DE CHARIOTAGE ET CHANFREINAGE DU TUBE

de (mm) L (mm) Sm (mm) 20 14 2 25 16 2 32 18 2 40 20 2 50 23 2 63 27 3 75 31 3 90 35 3 110 41 3	Diamètre extérieur	Longueur de chariotage	Chanfrein
25 16 2 32 18 2 40 20 2 50 23 2 63 27 3 75 31 3 90 35 3	de (mm)	L (mm)	Sm (mm)
32 18 2 40 20 2 50 23 2 63 27 3 75 31 3 90 35 3	20	14	2
40 20 50 23 63 27 75 31 90 35	25	16	2
50 23 2 63 27 3 75 31 3 90 35 3	32	18	2
63 27 75 31 90 35	40	20	2
75 31 3 90 35 3	50	23	2
90 35 3	63	27	3
	75	31	3
110 41 3	90	35	3
	110	41	3

LONGUEUR D'INSERTION DU TUBE

Longueur d'insertion dans l'emboîture du raccord	Diamètre extérieur
L ₁ (mm)	de (mm)
14	20
15	25
17	32
18	40
20	50
26	63
29	75
32	90
35	110

TEMPS DE CHAUFFE, DE SOUDAGE ET DE REFROIDISSEMENT

		- · ·	1 15 1	D) (C 0007 D 1: 11			
		Tuyauteries en polypropylène selon : DVS 2207 Partie 11					
de	Épaisseur	Temps de	Temps de	Temps de			
(mm)	minimum* (mm)	chauffage (s)	soudage (s)	refroidissement (min)			
20	2,5	5	4	2			
25	2,7	7	4	2			
32	3	8	6	4			
40	3,7	12	6	4			
50	4,6	18	6	4			
63	3,6	24	8	6			
75	4,3	30	8	6			
90	6,1	40	8	6			
110	6,3	50	10	8			

*Pour un bon soudage, il est conseillé d'utiliser des tubes ayant une paroi d'une épaisseur supérieure à 2 mm et spécifiquement : - pour d jusqu'à 50 mm : les tubes série PN 10 et PN 16 - pour d de 63 à 110 mm : les tubes série PN 16, PN 10 et PN 6.

INSTRUCTIONS POUR SOUDAGE BOUT À BOUT

La procédure de soudage, par élément chauffant, « bout à bout » consiste à raccorder deux pièces (tubes et/ou raccords) ayant un diamètre et une épaisseur identiques, où les surfaces à souder sont chauffées jusqu'à la fusion par contact avec un élément chauffant (dit «miroir»), puis après que celui-ci a été éloigné, elles sont assemblées par pression pour réaliser le soudage.

Les instructions reportées ci-après ne doivent être considérées qu'à titre de références. Les installateurs devront être judicieusement formés et connaître parfaitement la démarche à suivre selon la machine à souder qu'ils utilisent.

CONTRÔLES PRÉLIMINAIRES AU SOUDAGE

Pour garantir un bon assemblage, avant de poursuivre le soudage; il faut :

- \bullet S'assurer que les valeurs de la température ambiante sont comprises entre +5 °C et +40 °C.
- Effectuer le contrôle des dimensions (ovalisation excessive) des éléments à souder.
- Vérifier la température de travail du miroir avec un thermomètre à contact calibré.
 Cette mesure doit être faite 10 minutes après avoir atteint la température minimale, ce qui permet au miroir de se réchauffer de façon homogène sur toute la section.
 La température de fusion doit être comprise entre 200 et 220 °C.
- Contrôler la surface du miroir (parfait état de la couche antiadhsion) et s'assurer qu'elle est propre en utilisant du papier non-tissé ou des chiffons non pelucheux.
- Contrôler le bon fonctionnement de la machine à souder.
- Contrôler l'état des mors de la machine à souder, afin que l'on puisse garantir le bon alignement des pièces à souder et le parallélisme des surfaces de contact.
- Vérifier la force d'entraînement du chariot mobile, en tenant compte des frottements internes et de la charge à déplacer (tubes ou raccords).
- Vérifier l'efficacité des instruments de mesure (manomètre et temporisateur).
- S'assurer que les tubes et/ou les raccords à souder ont un diamètre et une épaisseur identiques (même SDR).

PRÉPARATION POUR LE SOUDAGE

• Nettoyage des surfaces :

avant d'effectuer le positionnement des pièces à souder, il est nécessaire d'éliminer toutes les traces de saleté, graisse, poussière ou autres, aussi bien de l'extérieur que de l'intérieur des extrémités, en utilisant un chiffon propre, non pelucheux et imbibé d'un liquide détergent approprié. En ce qui concerne le choix du type de liquide détergent, il est recommandé de recourir à des produits conseillés directement chez des producteurs de ce secteur : le trichloroéthane, le chlorothène, l'alcool éthylique et l'alcool isopropylique sont aptes à l'emploi.

• Blocage des extrémités :

le blocage des éléments à souder doit se faire de façon à ce que le désalignement ne dépasse pas 10 % de l'épaisseur (fig. 1).

• Rabotage des bords à souder :

pour garantir un bon parallélisme et, tout aussi important, pour éliminer la pellicule d'oxyde, les extrémités des deux éléments à souder doivent être rabotées. Au terme de cette opération, en mettant en contact les deux extrémités, l'espace entre les deux bords ne doit pas être supérieur à 0,5 mm. Les copeaux issus du rabotage doivent être continus sur les deux bords à souder (fig. 2). À ce propos, il est toujours opportun, une fois que le rabotage est terminé, d'examiner les coupeaux pour s'assurer qu'il n'y a pas de défauts de fabrication. Les copeaux doivent être éliminés de la surface intérieure des composants à souder en utilisant une brosse ou un

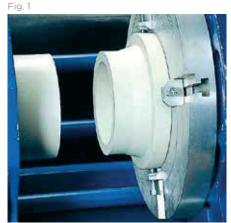


Fig. 2

chiffon propre. De toute manière, les surfaces rabotées ne doivent pas être touchées de la main ou salies de toute autre manière : à cette fin, les opérations de soudage doivent suivre immédiatement la phase de préparation, en recourant, si des traces de poussière se sont déposées sur les surfaces rabotées, au nettoyage effectué avec un chiffon imbibé de liquide détergent.

PROCÉDURE DE SOUDAGE THERMIQUE BOUT À BOUT

Le soudage des assemblages bout à bout de tubes et/ou raccords effectués par contact avec élément chauffant doit être exécuté en accomplissant correctement les différentes phases du cycle de soudage présentées ci-après et décrites dans les tableaux « Cycle de soudage » en prêtant attention aux valeurs présentées dans le tableau.

· Approche et préchauffage :

Pendant cette phase, les bords à souder sont rapprochés du thermoélément à une pression égale à p1+pt, pendant le temps nécessaire, afin de créer bourrelet uniforme tant à l'intérieur qu'à l'extérieur (fig. 3). La valeur de pression p1 doit permettre aux surfaces à souder, en contact avec le thermoélément, d'être soumises à une pression de 0,1 N/mm²: pour obtenir cette condition, la valeur de pression p1 doit être obtenue dans les tableaux fournis par le fabricant de la la machine à souder, parce qu'elle dépend, à diamètre et épaisseur des éléments à souder égaux, de la section du cvérin du circuit de commande de la machine et elle peut donc varier d'un modèle à l'autre.

La valeur pt indique la pression d'entraînement nécessaire pour vaincre les frottements dus aux mécanismes internes de la machine et au poids du tube positionné sur la glissière mobile qui gênent le déplacement libre de la glissière elle-même. Cette valeur est mesurée directement par le manomètre fourni avec la machine, en déplaçant la glissière mobile (fig. 4). Elle ne doit en aucun cas être supérieure à la valeur de la pression p1 : dans le cas contraire, il est nécessaire de recourir à l'emploi de chariots mobiles ou de suspenseurs oscillants pour faciliter le déplacement du tube.

• Chauffage:

après formation du bourrelet, réduire la pression de 10 % de la valeur d'approche et de préchauffage), ce qui permet ainsi au matériau de chauffer de manière uniforme, même en profondeur.

· Retrait du miroir :

cette phase doit être exécutée le plus rapidement possible, en éloignant de l'élément chauffant les bords à souder, en écartant les surfaces amollies sans les abîmer et en rapprochant immédiatement les bords à souder l'un de l'autre. Cette opération doit être effectuée rapidement pour empêcher les bords de trop refroidir (la température superficielle refroidit de 17 °C en 3 secondes).

• Application de la pression de soudage :

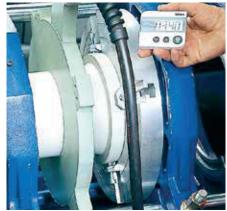
les bords doivent être mis en contact, en augmentant progressivement la pression à la valeur (p5+pt), où p5=p1 et où pt est la pression d'entraînement (fig. 5).

Soudage:

il faut maintenir la pression de soudage pendant le temps t5 (fig. 6).

· Refroidissement:

la phase de soudage étant effectuée, la pression de contact est annulée et le joint peut être éliminé de la soudeuse qui ne doit en aucun cas être sollicitée mécaniquement jusqu'à son refroidissement complet. Le temps de refroidissement doit être au moins égal au temps de soudage (t5).



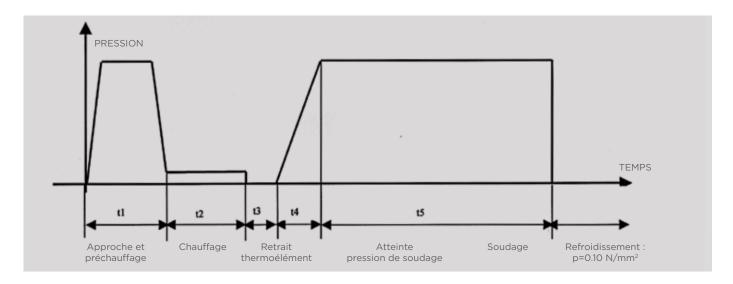

Fig. 5

Fig. 6

CYCLE DE SOUDAGE

Épaisseur tubes	Approche hauteur du cordon	Temps de préchauffage	Temps de retrait thermoélément max.	Atteinte pression de soudage	Temps de soudage
(mm)	(mm)	(s)	(s)	(s)	(min)
4,5	0,5	135	5	6	6
4,5 - 7	0,5	135 - 175	5 - 6	6 - 7	6 - 12
7 - 12	1	175 - 245	6 - 7	7 - 11	12 - 20
12 - 19	1	245 - 330	7 - 9	11 - 17	20 - 30
19 - 26	1,5	330 - 400	9 - 11	17 - 22	30 - 40
26 - 37	2	400 - 485	11 - 14	22 - 32	40 - 55
37 - 50	2,5	485 - 560	14 - 17	32 - 43	55 - 70

CONTRÔLE DE LA QUALITÉ DE LA JONCTION SOUDÉE

Il existe deux méthodes d'évaluation de la qualité : contrôles non destructifs et contrôles destructifs. Ces derniers réclament des équipements spécifiques. Il est toute-fois possible de contrôler de visu la qualité du raccord sans recourir à des instruments particuliers.

L'examen de visu concerne les vérifications suivantes :

- a) Le bourrelet de soudage doit être uniforme sur toute la circonférence du raccord ;
- b) L'entaille présente au centre du bourrelet doit rester au-dessus du diamètre extérieur des éléments soudés ;
- c) La surface extérieure du bourrelet ne doit pas être poreuse, ni présenter d'inclusions de poussière ou autres contaminations ;
- d) Il ne doit pas y avoir de ruptures superficielles ;
- et) La surface du bourrelet ne doit pas être trop brillante, car cela pourrait être un indice de surchauffe ;
- f) Le désalignement des éléments soudés ne doit pas être supérieur à 10 % de leur épaisseur.

DÉFAUTS LES PLUS FRÉQUENTS

Le tableau présente les types de défauts les plus fréquents qui apparaissent à la suite d'une procédure de soudage incorrecte.

Irrégularité du bo	urrelet le long de la circonférence du tube			
Causes probables	Mauvaise préparation des bouts à souder induisant une répartition hétérogène de la chaleur			
Bourrelet de taille	insuffisante			
Causes probables	Mauvais réglage des paramètres de soudage (température, pression, temps de soudage)			
Entaille au milieu	du bourrelet trop profonde			
Causes probables	Valeur de température ou de pression de soudage inférieure aux valeurs prévues			
Inclusions à la sur	face du bourrelet			
Causes probables	Bouts à souder mal nettoyés			
Porosité du bourr	elet			
Causes probables	Environnement trop humide pendant la phase de soudage			
Surface du bourre	elet trop brillante			
Causes probables	Surchauffe pendant le soudage			
Désalignement su	périeur à 10 % de l'épaisseur du tube et du raccord			
Causes probables	Centrage mal exécuté ou ovalisation excessive des tubes			

COMPATIBILITÉ ET FACTEURS DE SÉCURITÉ

Les produits en PP-H peuvent être soudés avec des produits analogues en PPR et en PPB sans aucun problème, après avoir vérifié la compatibilité de l'indice fluidité à chaud (MFI) selon les classifications DVS. PP-H et PPR présentent une MRS (Minimum Required Strength soit la contrainte tangentielle minimum générée par la pression hydrostatique admissible pour une espérance de vie de 50 ans à 20°C) différente : MRS 10 pour le PP-H, MRS 8 pour le PPR ; cela implique l'application de coefficients de sécurité (voir tableau 1) et une correpondance parfaite des épaisseurs de paroi.

L'épaisseur de paroi est définie par le diamètre extérieur et le SDR (rapport de dimensions standard) ou la série ISO S. Conformément à la norme EN ISO 15494-1, le facteur de sécurité à adopter et le SDR/Série déterminent la valeur de pression nominale PN de référence (PN : pression maxi d'exercice exprimée en bars à 20 °C, pendant la durée de 50 ans, dans l'eau).

FACTEURS DE SÉCURITÉ

Facteur de sécurité	Température d'utilisation
	10 °C < t ≤ 40 °C 40 °C < t < 0 °C
· ·	t > 60 °C

EPAISSEUR DE LA PAROI

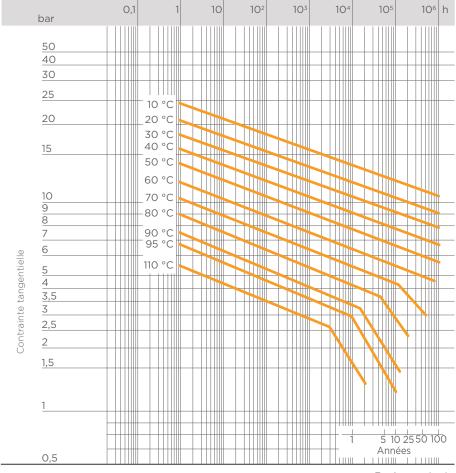
d		Epaisseur de la paroi S (mm)
	SDR 11 - ISO S 5	SDR 17,6 - ISO S 8,3
20	1,9	-
25	2,3	-
32	2,9	1,8
40	3,7	2,3
50	4,6	2,9
63	5,8	3,6
75	6,8	4,3
90	8,2	5,1
110	10	6,3
125	11,4	7,1
140	12,7	8,0
160	14,6	9,1
180	16,4	10,2
200	18,2	11,4
225	20,5	12,8
250	22,7	14,2
280	25,4	15,9
315	28,6	17,9
355	32,2	20,1
400	36,3	22,7
450	40,9	25,5
500	-	28,4
560	-	31,7
630	-	35,7
710	-	40,2
800	-	45,3

TUBES

PPH

TUBE ISO-UNI

Tubes pression pour systèmes d'assemblage par soudage bout à bout ou soudage dans l'emboîture.


TUBE PRESSION

Spécifications techniques				
Gamme de dimensions	d 10 à d 500 (mm)			
Pression nominale	SDR 17, 6 (PN6 avec eau à 20 °C) SDR 11 (PN10 avec eau à 20 °C)			
Plage de température	0 °C à 100 °C			
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les raccords selon EN ISO 15494			
Références normatives	Critères de fabrication : EN ISO 15494			
	Méthodes et conditions requises pour les tests : EN ISO 15494			
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318, UNI 11397			
Materiau	PP-H			

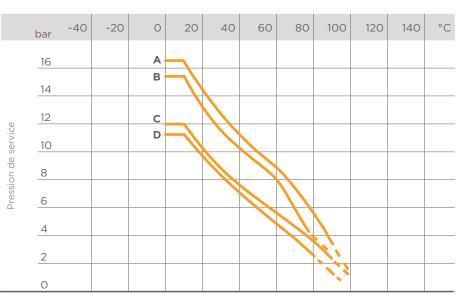
DONNÉES TECHNIQUES

COURBES DE RÉGRESSION POUR TUBES EN PP-H

Coefficients de régression conformément à DIN et EN ISO pour des valeurs de MRS = 10 N/mm²

Espérance de vie

VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE


Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Pour les autres cas une diminution adéquate de la pression nominale PN est nécessaire.

A = SDR 11 ISO-S5 - 5 ans

B = SDR 11 ISO-S5 - 25 ans

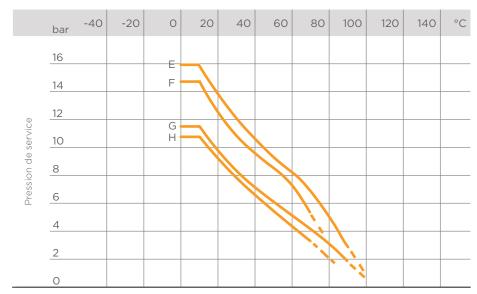
C = SDR 17,6 ISO-S8,3 - 5 ans

D = SDR 17,6 ISO-S8,3 - 25 ans

Température de service

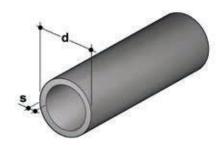
Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.

VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE


Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Pour les autres cas une diminution adéquate de la pression nominale PN est nécessaire.

E = SDR 11 ISO-S5 - 10 ans

F = SDR 11 ISO-S5 - 50 ans

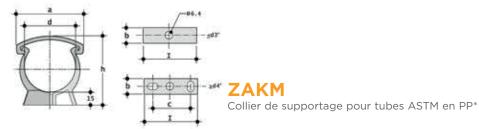

G = SDR 17,6 ISO-S8,3 - 10 ans

H = SDR 17,6 ISO-S8,3 - 50 ans

Température de service

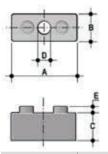
DIMENSIONS

Tube PPTube pression en PP-H selon DIN 8077/8078, Beige - RAL 7032, longueur standard 5m


SDR	d (mm)	s (mm)	Poids (kg/m)	Longueur	Code
11	10	1.8	0.046	5	TUBEPP10PN10
11	20	1.9	0.107	5	TUBEPP20PN10
11	25	2.3	0.164	5	TUBEPP25PN10
11	32	2.9	0.260	5	TUBEPP32PN10
11	40	3.7	0.412	5	TUBEPP40PN10
11	50	4.6	0.638	5	TUBEPP50PN10
11	63	5.8	1.010	5	TUBEPP63PN10
11	75	6.8	1.400	5	TUBEPP75PN10
11	90	8.2	2.030	5	TUBEPP90PN10
11	110	10.0	3.010	5	TUBEPP110PN10
11	125	11.4	3.910	5	TUBEPP125PN10
11	140	12.7	4.870	5	TUBEPP140PN10
11	160	14.6	6.390	5	TUBEPP160PN10
11	180	16.4	8.070	5	TUBEPP180PN10
11	200	18.2	9.950	5	TUBEPP200PN10
11	225	20.5	12.600	5	TUBEPP225PN10
11	250	22.7	15.500	5	TUBEPP250PN10
11	280	25.4	19.400	5	TUBEPP280PN10
11	315	28.6	24.600	5	TUBEPP315PN10
11	355	32.2	31.200	5	TUBEPP355PN10
11	400	36.3	39.600	5	TUBEPP400PN10
11	500	45.4	61.800	5	TUBEPP500PN10
17,6	25	1.8	0.132	5	TUBEPP25PN6
17,6	32	1.8	0.172	5	TUBEPP32PN6
17,6	40	2.3	0.273	5	TUBEPP40PN6
17,6	50	2.9	0.422	5	TUBEPP50PN6
17,6	63	3.6	0.659	5	TUBEPP63PN6
17,6	75	4.3	0.935	5	TUBEPP75PN6
17,6	90	5.1	1.330	5	TUBEPP90PN6
17,6	110	6.3	1.990	5	TUBEPP110PN6
17,6	125	7.1	2.550	5	TUBEPP125PN6
17,6	140	8.0	3.200	5	TUBEPP140PN6
17,6	160	9.1	4.170	5	TUBEPP160PN6
17,6	180	10.2	5.250	5	TUBEPP180PN6
17,6	200	11.4	6.500	5	TUBEPP200PN6
17,6	225	12.8	8.190	5	TUBEPP225PN6
17,6	250	14.2	10.100	5	TUBEPP250PN6
17,6	280	15.9	12.600	5	TUBEPP280PN6
17,6	315	17.9	16.000	5	TUBEPP315PN6
17,6	355	20.1	20.300	5	TUBEPP355PN6
17,6	400	22.7	25.700	5	TUBEPP400PN6
17,6	500	28.4	40.200	5	TUBEPP500PN6

d	а	b	С	h	Ī	Code
**16	26	18	-	33	16	ZIKM016
**20	33	14	-	38	20	ZIKM020
**25	41	14	-	44	25	ZIKM025
**32	49	15	-	51	32	ZIKM032
**40	58	16	-	60	40	ZIKM040
**50	68	17	-	71	60	ZIKM050
**63	83	18	-	84	63	ZIKM063
**75	96	19	-	97	75	ZIKM075
**90	113	20	-	113	90	ZIKM090
**110	139	23	40	134	125	ZIKM110
**125	158	25	60	151	140	ZIKM125
**140	177	27	70	167	155	ZIKM140
**160	210	30	90	190	180	ZIKM160
**180	237	33	100	211	200	ZIKM180

^{*}pour le supportage du tuyau, se référer aux recommandations de la DVS 2210-1 (Planning and execution above-ground pipe system)


**fournisseur tiers

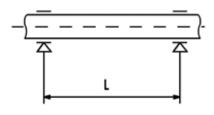
d	а	b	С	h	1	Code
**3/8"	26	13	-	34	16	ZAKM038
**1/2"	33	14	-	39	20	ZAKM012
**3/4"	41	14	-	45	25	ZAKM034
**1"	49	15	-	52	32	ZAKM100
**1" 1/4	58	16	-	61	40	ZAKM114
**1" 1/2	68	17	-	67	50	ZAKM112
**2"	83	18	-	80	63	ZAKM200
**2" 1/2	96	19	-	96	75	ZAKM212
**3"	118	20	-	110	90	ZAKM300
**4"	140	25	60	135	140	ZAKM400
**6"	197	30	90	196	180	ZAKM600

^{*}pour le supportage du tuyau, se référer aux recommandations de la DVS 2210-1 (Planning and execution above-ground pipe system)

**fournisseur tiers

DSM

Entretoises en PP pour colliers de supportage ZIKM*


d	А	В	С	D	E	Pack.	Master	Code
**32	33	16	14	8	4	20	120	DSM032
**40	41	17	17	8	4	10	80	DSM040
**50	51	18	17	8	4	10	50	DSM050
**63	64	19	22,5	8	4	10	40	DSM063
**75	76	20	34,5	8	4	10	40	DSM075

*pour le supportage du tuyau, se référer aux recommandations de la DVS 2210-1 (Planning and execution above-ground pipe system)

**fournisseur tiers

INSTALLATION

POSITIONNEMENT DES COLLIERS POUR TUBES (ZIKM ET ZAKM)

L'installation des tuyauteries en matière thermoplastique réclame l'emploi de colliers pour prévenir le fléchissement et les contraintes mécaniques qui en découlent. La distance entre les supports est liée au matériau, au SDR, à la température du tube et à la densité du fluide convoyé.

Avant de procéder à l'installation des supports, vérifier les distances indiquées dans le tableau ci-dessous, conformément aux recommandations de la DVS 2210-01 pour conduites de transport d'eau.

Supportage des tubes PP-H pour le transport de liquides ayant une densité égale à 1 g/cm³ (eau et autres fluides de même intensité)

Pour tubes SDR 11 / S 5 / PN 10 :

-1		es températui	res de paroi*				
d mm	≤ 20° C	30° C	40° C	50° C	60° C	70° C	80° C
16	650	625	600	575	550	525	500
20	700	675	650	625	600	575	550
25	800	775	750	725	700	675	650
32	950	925	900	875	850	800	750
40	1100	1075	1050	1000	950	925	875
50	1250	1225	1200	1150	1100	1050	1000
63	1450	1425	1400	1350	1300	1250	1200
75	1550	1500	1450	1400	1350	1300	1250
90	1650	1600	1550	1500	1450	1400	1350
110	1850	1800	1750	1700	1600	1500	1400
125	2000	1950	1900	1800	1700	1600	1500
140	2100	2050	2000	1900	1800	1700	1600
160	2250	2200	2100	2000	1900	1800	1700
180	2350	2300	2200	2100	2000	1900	1800
200	2500	2400	2300	2200	2100	2000	1900
225	2650	2550	2450	2350	2250	2150	2000
250	2800	2700	2600	2500	2400	2300	2150
280	2950	2850	2750	2650	2550	2450	2300
315	3150	3050	2950	2850	2700	2600	2450
355	3350	3250	3150	3000	2850	2750	2600
400	3550	3450	3350	3200	3050	2900	2750

*La distance L peut être majorée de 30 % en cas d'installation verticale du tube.

Pour des SDR différents, appliquer les facteurs multiplicateurs suivants : 0,91 pour SDR 17 et SDR 17,6

Supportage des tuyaux en PP-H pour le transport des liquides ayant une densité autre que 1 g/cm^3 .

Si le liquide à transporter a une densité différente de 1 g/cm 3 , la distance L du tableau doit alors être multipliée par les facteurs indiqués dans le tableau.

Densité du fluide en g/cm³	Facteur pour l'intervalle de supportage
1,25	0,96
1,50	0,92
1,75	0,88
2,00	0,84
< 0,01	1,30 pour SDR11 1,47 pour SDR17,6

RACCORDS POUR SOUDAGE (ED) DANS L'EMBOÎTURE

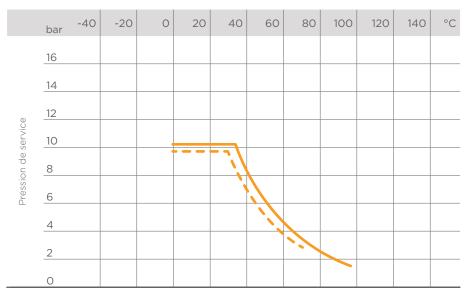
PPH

RACCORDS

POUR SOUDAGE DANS L'EMBOÎTURE

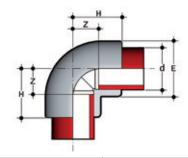
Gamme de raccords destinés au transport de fluides sous pression avec système d'assemblage par soudage à chaud dans l'emboîture

RACCORDS SÉRIE MÉTRIQUE ISO-UNI

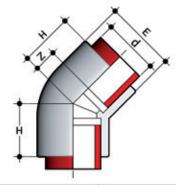

Spécifications techniques	s
Gamme de dimensions	d 20 à d 110 (mm)
Pression nominale	PN 10 pour de l'eau à 20 °C
Plage de température	0 °C à 100 °C
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494
	Bridage : ISO 7005-1, EN 1092-1, EN ISO 15494, DIN 2501, ANSI B16.5 cl.150
Références normatives	Critères de fabrication : EN ISO 15494 Méthodes et conditions requises pour les tests : EN ISO 15494
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318
Matériau raccords	РР-Н
Matériaux d'étanchéité	EPDM, FPM

DONNÉES TECHNIQUES

VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

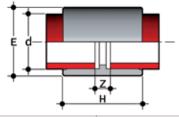

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Pour les autres cas une diminution adéquate de la pression nominale PN est nécessaire.

Température de service

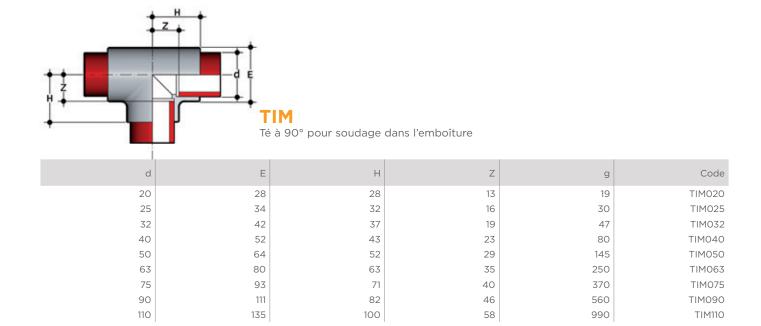

DIMENSIONS

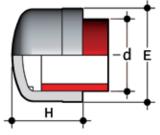
GIM

Coude à 90° pour soudage dans l'emboîture


d	E	н	Z	g	Code
20	28	28	13	14	GIM020
25	34	32	16	23	GIM025
32	42	37	20	37	GIM032
40	52	43	22	64	GIM040
50	64	51	28	105	GIM050
63	79	61	34	180	GIM063
75	93	73	42	300	GIM075
90	111	85	49	455	GIM090
110	135	101	59	815	GIM110

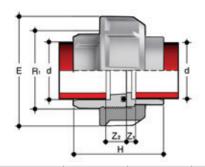
HIM


Coude à 45° pour soudage dans l'emboîture


d	E	Н	Z	g	Code
20	28	21	7	12	HIM020
25	34	25	9	19	HIM025
32	42	29	12	33	HIM032
40	52	36	15	57	HIM040
50	63	43	19	105	HIM050
63	79	51	24	182	HIM063
75	92	53	20	240	HIM075
90	113	61	23,5	430	HIM090
110	135	71	28	660	HIM110

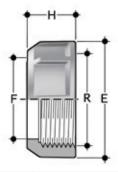
MIM Manchon pour soudage dans l'emboîture

d	Е	н	Z	g	Code
20	28	36	8	10	MIM020
25	34	39	8	16	MIM025
32	42	43	9	25	MIM032
40	52	47	8	39	MIM040
50	63	55	8	62	MIM050
63	78	61	9	96	MIM063
75	91	70	10	145	MIM075
90	109	80	10	230	MIM090
110	132	93	12	370	MIM110



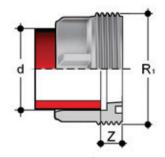
CIM

Bouchon femelle soudage dans l'emboîture


d	н	L	g	Code
20	28	25	7	CIM020
25	34	27	11	CIMO25
32	42	32	19	CIMO32
40	51	36	31	CIMO40
50	63	41	50	CIM050
63	78	44	88	CIM063
75	91	48	116	CIM075
90	109	65	212	CIM090
110	132	71	349	CIM110

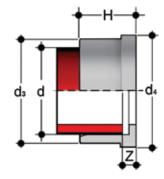
BIGM

Union 3 pièces pour soudage dans l'emboîture avec joint torique en EPDM ou FPM

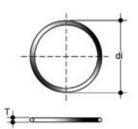

d	R ₁	PN	Е	Н	Z_1	Z_2	g	Code EPDM	Code FPM
20	1"	10	47	45,5	12	5,5	34	BIGM020E	BIGM020F
25	1" 1/4	10	58	49,5	12	5,5	59	BIGM025E	BIGM025F
32	1" 1/2	10	65	53,5	12	5,5	73	BIGM032E	BIGM032F
40	2"	10	78	59,5	14	5,5	115	BIGM040E	BIGM040F
50	2" 1/4	10	85	67,5	16	5,5	146	BIGM050E	BIGM050F
63	2" 3/4	10	103	79,5	20	5,5	249	BIGM063E	BIGM063F

EFGM

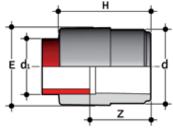
Écrou union à taraudage cylindrique pour unions 3 pièces BIGM, BIFGM, BIFOM, BIROM, BIFXM, BIRXM


R	d BIGM	PN	Е	F	Н	g	Code
1"	20	10	47	28	22	19	EFGM100
1" 1/4	25	10	58	36	25	29	EFGM114
1" 1/2	32	10	65	42	27	40	EFGM112
2"	40	10	78	53	30	57	EFGM200
2" 1/4	50	10	85	59	33	74	EFGM214
2" 3/4	63	10	103	74	38	119	EFGM234

E/DICM

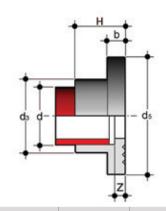

Collet fileté pour écrou union pour soudage dans l'emboîture, série métrique

d	R ₁	PN	Z	g	Code
20	1"	10	12	10	FBIGM020
25	1" 1/4	10	12	17	FBIGM025
32	1" 1/2	10	12	24	FBIGM032
40	2"	10	14	39	FBIGM040
50	2" 1/4	10	16	47	FBIGM050
63	2" 3/4	10	18	89	FBIGM063


Collet libre pour union 3 pièces pour soudage dans l'emboîture, série métrique

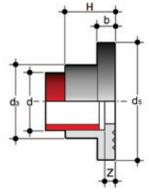
d	PN	d ₃	d ₄	Н	Z	g	Code
20	10	27,5	30,1	19,5	5,5	7	QBIGM020
25	10	36	38,8	21,5	5,5	14	QBIGM025
32	10	41,5	44,7	23,5	5,5	17	QBIGM032
40	10	53	56,5	25,5	5,5	30	QBIGM040
50	10	59	62,6	28,5	5,5	30	QBIGM050
63	10	74	78,4	32,5	5,5	51	QBIGM063

Joint toriqueJoints pour union 3 pièces BIGM, BIFGM, BIFOM, BIROM, BIFXM, BIRXM


d union 3 pièces	С	de	Т	Code EPDM	Code FPM
16	3062	15,54	2,62	OR3062E	OR3062F
20	4081	20,22	3,53	OR4081E	OR4081F
25	4112	28,17	3,53	OR4112E	OR4112F
32	4131	32,93	3,53	OR4131E	OR4131F
40	6162	40,65	5,34	OR6162E	OR6162F
50	6187	47	5,34	OR6187E	OR6187F
63	6237	59,69	5,34	OR6237E	OR6237F
75	6300	75,57	5,34	OR6300E	OR6300F
90	6362	91,45	5,34	OR6362E	OR6362F
110	6450	113,67	5,34	OR6450E	OR6450F

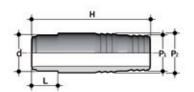
RIM

Embout mâle (d), embout femelle réduit pour soudage dans l'emboîture (d_1)


$d \times d_1$	E	н	Z	g	Code
25 x 20	28	39	25	10	RIM025020
32 x 20	36	43	30	13	RIM032020
32 x 25	34	46	30	17	RIM032025
40 x 25	42	48	33	24	RIM040025
40 x 32	42	51	33	27	RIM040032
50 x 32	52	54	36	39	RIM050032
50 x 40	52	57	36	44	RIM050040
63 x 32	65	61	44	69	RIM063032
63 x 50	65	68	44	76	RIM063050
75 x 50	78	69	47	106	RIM075050
75 x 63	78	75	47	115	RIM075063
90 x 63	92	82	56	156	RIM090063
90 x 75	92	88	56	175	RIM090075
110 x 63	112	93	66	290	RIM110063
110 x 90	112	102	66	305	RIM110090

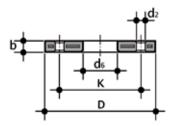
QRNM

Collet à face striée (conforme aux normes DIN) pour soudage dans l'emboîture, à utiliser avec des brides folles ODB


d	DN	b	d ₃	d ₄	Н	Z	g	Code
20	15	7	27	45	20	6	12	QRNM020
25	20	9	33	58	22	6	24	QRNM025
32	25	10	41	68	25	6	36	QRNM032
40	32	11	50	78	27	6	47	QRNM040
50	40	12	61	88	30	6	63	QRNM050
63	50	14	76	102	34	6	94	QRNM063
75	65	16	90	122	38	6	149	QRNM075
90	80	17	108	138	44	8	213	QRNM090
110	100	18	131	158	50	8	297	QRNM110

QRAM

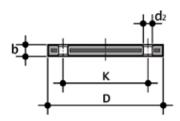
Collet à face striée pour le soudage dans l'emboîture, à utiliser avec des brides folles OAB (pour d'autres dimensions, utiliser QRNM)


d	DN	OAB d	b	d ₃	d ₅	Н	Z	g	Code
25	20	3/4"	9	33	54	22	6	24	QRAM034
32	25	1"	10	41	63	25	6	36	QRAM100
40	32	1" 1/4	11	50	72	27	6	47	QRAM114
50	40	1" 1/2	12	61	82	30	6	63	QRAM112
90	80	3"	17	108	132	44	8	213	QRAM300

AIM

Embout cannelé avec embout mâle pour soudage dans l'emboîture

d x P ₁ x	D ₂ H	L	g	Code
20 x 22 x 2	0 67	16	11	AIM020022020
25 x 27 x 3	5 81	18	20	AIM025027025
32 x 32 x 3	0 95	20	33	AIM032032030
40 x 42 x 4	0 104	22	68	AIM040042040
50 x 52 x 5	0 111	25	100	AIM050052050
63 x 64 x 6	0 122	29	150	AIM063064060

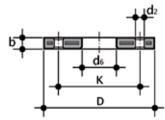


ODB

Bride folle en acier revêtu de PP/FRP EN/ISO/DIN pour collet d'appui QRV, QPV. Perçage : PN 10/16

d	DN	*PMA (bar)	b	d ₂	d_6	D	K	М	n	**(Nm)	g	Code
20	15	16	12	14	28	95	65	M12	4	15	290	ODB020
25	20	16	14	14	34	105	75	M12	4	15	410	ODB025
32	25	16	16	14	42	115	85	M12	4	15	610	ODB032
40	32	16	16	18	51	140	100	M16	4	20	880	ODB040
50	40	16	16	18	62	150	110	M16	4	30	810	ODB050
63	50	16	19	18	78	165	125	M16	4	35	940	ODB063
75	65	16	19	18	92	188	145	M16	4	40	1210	ODB075
90	80	16	21	18	109	200	160	M16	8	40	1480	ODB090
***125	100	16	20	18	134	220	180	M16	8	45	1570	ODB125

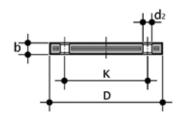
*PMA pression de service maximale admissible **couple de serrage nominal ***d125: pour collets QRNM d 110



ODBC

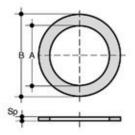
Bride pleine en acier revêtu de PP/FRP EN/ISO/DIN. Perçage : PN 10/16

d	DN	*PMA (bar)	b	d ₂	D	К	М	n	**(Nm)	g	Code
20	15	16	12	14	95	65	M12	4	15	290	ODBC020
25	20	16	12	14	105	75	M12	4	15	390	ODBC025
32	25	16	16	14	115	85	M12	4	15	550	ODBC032
40	32	16	16	18	140	100	M16	4	25	820	ODBC040
50	40	16	16	18	150	110	M16	4	35	900	ODBC050
63	50	16	16	18	165	125	M16	4	35	1150	ODBC063
75	65	16	18	18	185	145	M16	4	40	1680	ODBC075
90	80	16	18	18	200	160	M16	8	40	2240	ODBC090
110	100	16	20	18	220	180	M16	8	45	2800	ODBC110

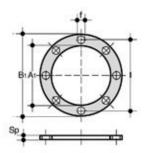

*PMA pression de service maximale admissible **couple de serrage nominal

Bride folle en acier revêtu de PP/FRP ANSI B16.5 cl.150 pour collets QRNM et QRAM

d	DN	*PMA (bar)	b	d ₂ mm	d_2 pouce	d_6	D	K mm	K mm	n	**(Nm)	g	Code
1/2"	15	16	12	16	5/8"	28	95	60,45	2 3/8"	4	15	220	OAB012
3/4"	20	16	12	16	5/8"	34	102	69,85	2 3/4"	4	15	240	OAB034
1"	25	16	16	16	5/8"	42	114	79,25	3 1/8"	4	15	390	OAB100
1" 1/4	32	16	16	16	5/8"	51	130	88,9	3 1/2"	4	25	510	OAB114
1" 1/2	40	16	18	16	5/8"	62	133	98,55	3 7/8"	4	35	580	OAB112
2"	50	16	18	20	3/4"	78	162	120,65	4 3/4"	4	35	860	OAB200
2" 1/2	65	16	18	20	3/4"	92	184	139,7	5 1/2"	4	40	1100	OAB212
3"	80	16	18	20	3/4"	111	194	152,4	6"	4	40	1040	OAB300
4"	100	16	18	20	3/4"	133	229	190,5	7 1/2"	8	40	1620	OAB400


*PMA pression de service maximale admissible **couple de serrage nominal

OABC Bride pleine en acier revêtu de PP chargé FV ANSI B16.5 cl.150


d	DN	*PMA	b	d ₂	d ₂	D	K	K	n	**(Nm)	g	Code
		(bar)		mm	pouce		mm	pouce			Ü	
1/2"	15	16	12	16	5/8"	95	60,45	2 3/8"	4	15	200	OABC012
3/4"	20	16	12	16	5/8"	102	69,85	2 3/4"	4	15	240	OABC034
1"	25	16	16	16	5/8"	114	79,25	3 1/8"	4	15	370	OABC100
1" 1/4	32	16	16	16	5/8"	130	88,90	3 1/2"	4	25	530	OABC114
1" 1/2	40	16	18	16	5/8"	133	98,55	3 7/8"	4	35	560	OABC112
2"	50	16	18	20	3/4"	162	120,65	4 3/4"	4	35	810	OABC200
2" 1/2	65	16	18	20	3/4"	184	139,70	5 1/2"	4	40	1070	OABC212
3"	80	16	18	20	3/4"	194	152,40	6"	4	40	1030	OABC300
4"	100	16	18	20	3/4"	229	190,50	7 1/2"	8	40	1570	OABC400

*PMA pression de service maximale admissible **couple de serrage nominal

QHV/X
Joint plat en EPDM et FPM par bridage selon DIN 2501, EN 1092

d	DN	А	В	Sp	Code EPDM	Code FPM
20 - 1/2"	15	20	32	2	QHVX020E	QHVX020F
25 - 3/4"	20	24	38,5	2	QHVX025E	QHVX025F
32 - 1"	25	32	48	2	QHVX032E	QHVX032F
40 - 1" 1/4	32	40	59	2	QHVX040E	QHVX040F
50 - 1" 1/2	40	50	71	2	QHVX050E	QHVX050F
63 - 2"	50	63	88	2	QHVX063E	QHVX063F
75 - 2" 1/2	65	75	104	2	QHVX075E	QHVX075F
90 - 3"	80	90	123	2	QHVX090E	QHVX090F
110 - 4"	100	110	148	3	QHVX110E	QHVX110F

QHV/Y

Joint plat en EPDM pour bridage selon DIN 2501, EN 1092, autocentré pour perçage PN 10/16

d	DN	A ₁	B ₁	f	I	U	Sp	Code
20 - 1/2"	15	17	95	14	65	4	2	QHVY020E
25 - 3/4"	20	22	107	14	76,3	4	2	QHVY025E
32 - 1"	25	28	117	14	86,5	4	2	QHVY032E
40 - 1" 1/4	32	36	142,5	18	101	4	2	QHVY040E
50 - 1" 1/2	40	45	153,3	18	111	4	2	QHVY050E
63 - 2"	50	57	168	18	125,5	4	2	QHVY063E
75 - 2" 1/2	65	71	187,5	18	145,5	4	3	QHVY075E
90 - 3"	80	84	203	18	160	8	3	QHVY090E
110 - 4"	100	102	223	18	181	8	3	QHVY110E

RACCORDS POUR SOUDAGE (EIP) DANS L'EMBOÎTURE

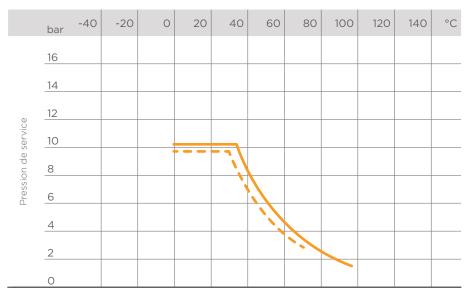
PPH

RACCORDS

POUR SOUDAGE DANS L'EMBOÎTURE

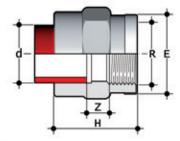
Gamme de raccords destinés au transport de fluides sous pression avec système d'assemblage par vissage et soudage à chaud dans l'emboîture.

RACCORDS D'ADAPTATION ISO-BSP

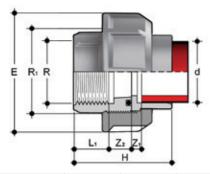

Spécifications technique					
Gamme de dimensions	d 20 à 63 (mm) ; R 3/8" à 2"				
Pression nominale	PN 10 pour de l'eau à 20 °C				
Plage de température	0 °C à 100 °C				
Standard d'accouplement	Soudage: EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494				
	Vissage : ISO 228-1, DIN 2999				
Références normatives	Critères de fabrication : EN ISO 15494 Méthodes et conditions requises pour les tests : EN ISO 15494				
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318				
Matériaux raccords	PP-H				
Matériau d'étanchéité	EPDM, FPM				

DONNÉES TECHNIQUES

VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

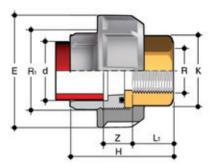

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Pour les autres cas une diminution adéquate de la pression nominale PN est nécessaire.

Température de service


DIMENSIONS

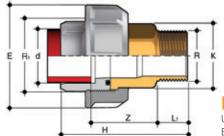
MIMM

Manchon avec embout pour soudage dans l'emboîture (d) et avec embout taraudé BSP (R) avec bague de renforcement en acier INOX


d x R	E	Н	Z	g	Code
20 x 1/2"	30	39	8	14	MIMM020012
25 x 3/4"	39	41	8	23	MIMM025034
32 x 1"	47	45	7	40	MIMM032100
40 x 1" 1/4	55	50	8	46	MIMM040114
50 x 1" 1/2	66	55	9	92	MIMM050112
63 x 2"	83	63	9	150	MIMM063200

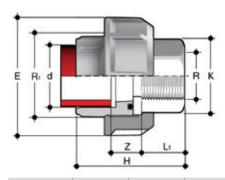
BIFGM

Manchon avec embout pour soudage dans l'emboîture (d), embout taraudé BSP (R) et avec joint torique en EPDM ou FPM.


d x R	R_1	PN	Е	Н	L ₁	Z_1	Z_2	g	Code EPDM	Code FPM
20 x 1/2"	1"	10	47	50,5	15	5,5	16	43	BIFGM020012E	BIFGM020012F
25 x 3/4"	1" 1/4	10	58	54,5	16,3	5,5	16,7	68	BIFGM025034E	BIFGM025034F
32 x 1"	1" 1/2	10	65	59,5	19,1	5,5	16,9	94	BIFGM032100E	BIFGM032100F
40 x 1" 1/4	2"	10	78	66,5	21,4	5,5	19,6	145	BIFGM040114E	BIFGM040114F
50 x 1" 1/2	2" 1/4	10	85	73,5	21,4	5,5	23,6	196	BIFGM050112E	BIFGM050112F
63 x 2"	2" 3/4	10	103	82,5	25,7	5,5	24,3	312	BIFGM063200E	BIFGM063200F

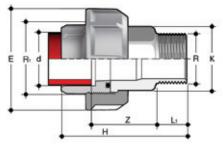
BIFOM

Union 3 pièces mixte PP-H/laiton avec embout pour soudage dans l'emboîture (d), embout taraudé BSP (R) en laiton et avec joint torique en EPDM


d x R	R ₁	PN	Е	Н	K	L ₁	Z	g	Code EPDM
20 x 1/2"	1"	10	47	48,5	25	16,5	18	89	BIFOM020012E
25 x 3/4"	1" 1/4	10	58	53,5	32	18,5	19	159	BIFOM025034E
32 x 1"	1" 1/2	10	65	57,5	38	19,5	20	180	BIFOM032100E
40 x 1" 1/4	2"	10	78	64,5	48	21,5	23	357	BIFOM040114E
50 x 1" 1/2	2" 1/4	10	85	78,5	55	23	32,5	448	BIFOM050112E
63 x 2"	2" 3/4	10	103	85,5	69	27	31,5	785	BIFOM063200E

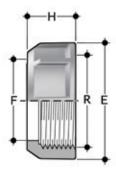
BIROM

Union 3 pièces mixte PP-H/laiton avec embout pour soudage dans l'emboîture (d), Embout fileté R mâle NSP en laiton, avec joint torique en EPDM


d x R	R_1	PN	Е	Н	K	L ₁	Z	g	Code EPDM
20 x 1/2"	1"	10	47	65	25	13,5	37,5	134	BIROM020012E
25 x 3/4"	1" 1/4	10	58	71,5	32	15	40,5	227	BIROM025034E
32 x 1"	1" 1/2	10	65	78	38	17,5	42,5	287	BIROM032100E
40 x 1" 1/4	2"	10	78	87	48	19,5	47,5	534	BIROM040114E
50 x 1" 1/2	2" 1/4	10	85	95	55	19,5	52,5	668	BIROM050112E
63 x 2"	2" 3/4	10	103	113,5	69	24	62,5	1144	BIROM063200E

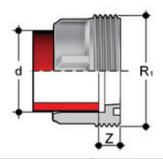
BIFXM

Union 3 pièces mixte PP-H/acier inox avec embout pour soudage dans l'emboîture (d), embout taraudé BSP (R) en acier inox A316L, avec joint torique en EPDM ou FPM


d x R	R ₁	PN	Е	Н	K	L ₁	Z	g	Code EPDM	Code FPM
20 x 1/2"	1"	10	47	48,5	25	16,5	18	82	BIFXM020012E	BIFXM020012F
25 x 3/4"	1" 1/4	10	58	53,5	32	18,5	19	146	BIFXM025034E	BIFXM025034F
32 x 1"	1" 1/2	10	65	57,5	38	19,5	20	165	BIFXM032100E	BIFXM032100F
40 x 1" 1/4	2"	10	78	64,5	48	21,5	23	328	BIFXM040114E	BIFXM040114F
50 x 1" 1/2	2" 1/4	10	85	78,5	55	23	32,5	411	BIFXM050112E	BIFXM050112F
63 x 2"	2" 3/4	10	103	85,5	69	27	31,5	720	BIFXM063200E	BIFXM063200F

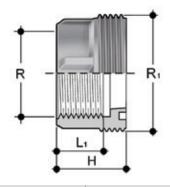
RIRXM

Union 3 pièces mixte PP-H/acier inox avec embout pour soudage dans l'emboîture (d), embout fileté BSP (R) en acier inox A316L, avec joint torique en EPDM ou FPM

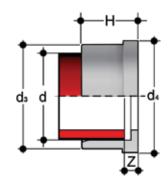

d x R	R_1	PN	Е	Н	К	L ₁	Z	g	Code EPDM	Code FPM
20 x 1/2"	1"	10	47	65	25	13,5	37,5	123	BIRXM020012E	BIRXM020012F
25 x 3/4"	1" 1/4	10	58	71,5	32	15	40,5	208	BIRXM025034E	BIRXM025034F
32 x 1"	1" 1/2	10	65	78	38	17,5	42,5	263	BIRXM032100E	BIRXM032100F
40 x 1" 1/4	2"	10	78	87	48	19,5	47,5	490	BIRXM040114E	BIRXM040114F
50 x 1" 1/2	2" 1/4	10	85	95	55	19,5	52,5	613	BIRXM050112E	BIRXM050112F
63 x 2"	2" 3/4	10	103	113,5	69	24	62,5	1050	BIRXM063200E	BIRXM063200F

EFGM

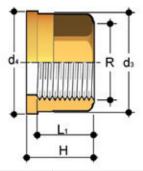
Écrou union à taraudage cylindrique pour unions 3 pièces BIGM, BIFGM, BIFOM, BIROM, BIFXM, BIRXM


R	d BIGM	PN	E	F	Н	g	Code
1"	20	10	47	28	22	19	EFGM100
1" 1/4	25	10	58	36	25	29	EFGM114
1" 1/2	32	10	65	42	27	40	EFGM112
2"	40	10	78	53	30	57	EFGM200
2" 1/4	50	10	85	59	33	74	EFGM214
2" 3/4	63	10	103	74	38	119	EFGM234

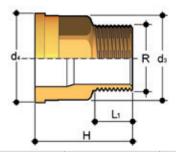
F/BIGM


Collet fileté pour écrou union pour soudage dans l'emboîture, série métrique

d	R ₁	PN	Z	g	Code
20	1"	10	12	10	FBIGM020
25	1" 1/4	10	12	17	FBIGM025
32	1" 1/2	10	12	24	FBIGM032
40	2"	10	14	39	FBIGM040
50	2" 1/4	10	16	47	FBIGM050
63	2" 3/4	10	18	89	FBIGM063

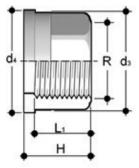

F/BFGMCollet fileté pour écrou union avec embout taraudé BSP

R	R ₁	PN	н	L ₁	g	Code
1/2"	1"	10	31	15	15	FBFGM012
3/4"	1" 1/4	10	33	16,3	21	FBFGM034
1"	1" 1/2	10	36	19,1	35	FBFGM100
1" 1/4	2"	10	41	21,4	55	FBFGM114
1" 1/2	2" 1/4	10	45	21,4	75	FBFGM112
2"	2" 3/4	10	50	25,7	105	FBFGM200

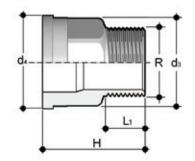

Q/BIGMCollet libre pour union 3 pièces pour soudage dans l'emboîture, série métrique

d	PN	d ₃	d_4	Н	Z	g	Code
20	10	27,5	30,1	19,5	5,5	7	QBIGM020
25	10	36	38,8	21,5	5,5	14	QBIGM025
32	10	41,5	44,7	23,5	5,5	17	QBIGM032
40	10	53	56,5	25,5	5,5	30	QBIGM040
50	10	59	62,6	28,5	5,5	30	QBIGM050
63	10	74	78,4	32,5	5,5	51	QBIGM063

Q/BFOCollet libre avec embout taraudé BSP en laiton

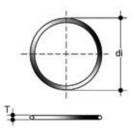

R	d ₃	d ₄	Н	L ₁	g	Code
3/8"	22	24	21,5	13,5	38	QBFO038
1/2"	27,5	30,1	22,5	16,5	60	QBFO012
3/4"	36	38,8	25,5	18,5	116	QBF0034
1"	41,5	44,7	27,5	19,5	144	QBF0100
1" 1/4	53	56,5	30,5	21,5	260	QBFO114
1" 1/2	59	62,6	33,5	23	325	QBFO112
2"	74	78,4	38,5	27	578	QBFO200

Q/BRO


Collet libre pour union 3 pièces avec embout fileté BSP en laiton

R	d ₃	d ₄	н	L ₁	g	Code
3/8"	22	24	34,5	10,5	64	QBRO038
1/2"	27,5	30,1	39	13,5	105	QBRO012
3/4"	36	38,8	43,5	15	184	QBRO034
1"	41,5	44,7	48	17,5	251	QBRO100
1" 1/4	53	56,5	53	19,5	437	QBRO114
1" 1/2	59	62,6	56	19,5	545	QBRO112
2"	74	78,4	65,5	24	937	QBRO200

Q/BFXCollet libre pour union 3 pièces avec embout taraudé BSP en acier inoxydable A316L


R	d ₃	d ₄	Н	L ₁	g	Code
3/8"	22	24	21,5	13,5	34	QBFX038
1/2"	27,5	30,1	22,5	16,5	54	QBFX012
3/4"	36	38,8	25,5	18,5	104	QBFX034
1"	41,5	44,7	27,5	19,5	130	QBFX100
1" 1/4	53	56,5	30,5	21,5	234	QBFX114
1" 1/2	59	62,6	33,5	23	293	QBFX112
2"	74	78,4	38,5	27	520	QBFX200

Q/BRX

Collet libre pour union 3 pièces avec embout fileté BSP en acier inoxydable A316L

R	d ₃	d_4	Н	L ₁	g	Code
3/8"	22	24	34,5	10,5	58	QBRX038
1/2"	27,5	30,1	39	13,5	95	QBRX012
3/4"	36	38,8	43,5	15	166	QBRX034
1"	41,5	44,7	48	17,5	226	QBRX100
1" 1/4	53	56,5	53	19,5	393	QBRX114
1" 1/2	59	62,6	56	19,5	491	QBRX112
2"	74	78,4	65,5	24	843	QBRX200

Joint toriqueJoints pour unions 3 pièces BIC, BIFC, BIFOC, BIFXC, BIRXC

d union 3 pièces	С	de	Т	Code EPDM	Code FPM
16	3062	15,54	2,62	OR3062E	OR3062F
20	4081	20,22	3,53	OR4081E	OR4081F
25	4112	28,17	3,53	OR4112E	OR4112F
32	4131	32,93	3,53	OR4131E	OR4131F
40	6162	40,65	5,34	OR6162E	OR6162F
50	6187	47	5,34	OR6187E	OR6187F
63	6237	59,69	5,34	OR6237E	OR6237F
75	6300	75,57	5,34	OR6300E	OR6300F
90	6362	91,45	5,34	OR6362E	OR6362F
110	6450	113,67	5,34	OR6450E	OR6450F

RACCORDS POUR SOUDAGE BOUT À BOUT

PPH

RACCORDS POUR SOUDAGE BOUT À BOUT

Gamme de raccords destinés au transport de fluides sous pression avec système d'assemblage par soudage à chaud bout à bout.

RACCORDS SÉRIE MÉTRIQUE ISO-UNI

Spécifications technique	s
Gamme de dimensions	d 20 à d 400 (mm)
Pression nominale	SDR 17, 6 (PN6) avec eau à 20 °C SDR 11 (PN10) avec eau à 20 °C
Plage de température	0 °C à 100 °C
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494
	Bridage : ISO 7005-1, EN 1092-1, EN ISO 15494, DIN 2501, ANSI B16.5 cl.150
Références normatives	Critères de fabrication : EN ISO 15494
	Méthodes et conditions requises pour les tests : EN ISO 15494
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1,UNI 11397
Matériau raccords	PP-H
Matériaux d'étanchéité	EPDM, FPM

DONNÉES TECHNIQUES

VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Pour les autres cas une diminution adéquate de la pression nominale PN est nécessaire.

A = SDR 11 ISO-S5 - 5 ans

B = SDR 11 ISO-S5 - 25 ans

C = SDR 17,6 ISO-S8,3 - 5 ans

D = SDR 17,6 ISO-S8,3 - 25 ans

Pressions de service réelles admissibles pour les raccords de tête en PP-H conformément à DIN 16962.

Coefficient de sécurité =1,7

	bar	-40	-20	0	20	40	60	80	100	120	140	°C
	16											
	14			A B								
æ	12											
Pression de service	10			CD	$\exists \setminus$	A						
ion de	8											
Press	6											
	4											
	2											
	0											

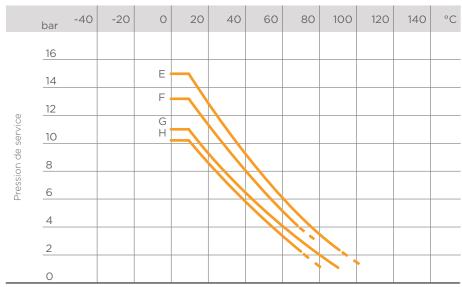
Température de service

VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Pour les autres cas une diminution adéquate de la pression nominale PN est nécessaire.

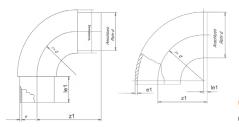
E = SDR 11 ISO-S5 - 10 ans

F = SDR 11 ISO-S5 - 50 ans

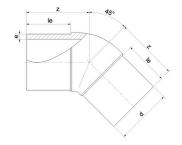

G = SDR 17,6 ISO-S8,3 - 10 ans

H = SDR 17,6 ISO-S8,3 - 50 ans

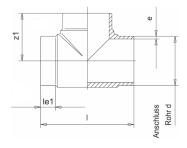
Pressions de service réelles admissibles pour les raccords de tête conformément à DIN 16962 et pour tuyaux en PP-H conformément à


DIN 8077

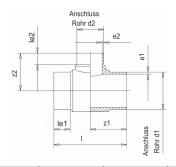
Coefficient de sécurité =1,7


Température de service

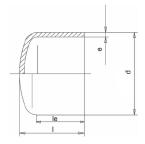
DIMENSIONS


GBMCoude à 90° à embout court pour soudage bout à bout

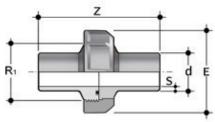
SDR	d (mm)	e (mm)	le1 (mm)	z1 (mm)	Angle (°)	Kg/pièce	Code
11	20	1,9	18	38	90	0,007	GBM20PN10
11	25	2,3	18	43	90	0,015	GBM25PN10
11	32	2,9	22	54	90	0,034	GBM32PN10
11	40	3,7	22	62	90	0,053	GBM40PN10
11	50	4,6	22	72	90	0,093	GBM50PN10
11	63	5,8	22	86	90	0,191	GBM63PN10
11	75	6,8	22	98	90	0,295	GBM75PN10
11	90	8,2	25	115	90	0,493	GBM90PN10
11	110	10	28	138	90	0,895	GBM110PN10
11	125	11,4	32	157	90	0,82	GBM125PN10
11	140	12,7	35	175	90	1,725	GBM140PN10
11	160	14,6	40	200	90	2,51	GBM160PN10
11	180	16,4	45	225	90	2,405	GBM180PN10
11	200	18,2	19	206	90	3,44	GBM200PN10
11	225	20,5	21	236	90	4,844	GBM225PN10
11	250	22,7	20	256	90	6,25	GBM250PN10
11	280	25,4	24	290	90	8,84	GBM280PN10
11	315	28,6	22	324	90	12,62	GBM315PN10
11	355	32,2	38	385	90	19,365	GBM355PN10
11	400	36,3	41	438	90	28,65	GBM400PN10
17,6	50	2,9	22	72	90	0,074	GBM50PN6
17,6	63	3,6	22	86	90	0,142	GBM63PN6
17,6	75	4,3	22	98	90	0,224	GBM75PN6
17,6	90	5,1	25	115	90	0,205	GBM90PN6
17,6	110	6,3	28	138	90	0,681	GBM110PN6
17,6	125	7,1	32	157	90	0,96	GBM125PN6
17,6	140	8	35	175	90	1,35	GBM140PN6
17,6	160	9,1	40	200	90	1,865	GBM160PN6
17,6	180	10,2	15	184	90	1,607	GBM180PN6
17,6	200	11,4	19	206	90	2,27	GBM200PN6
17,6	225	12,8	21	237	90	3,14	GBM225PN6
17,6	250	14,2	20	256	90	4,235	GBM250PN6
17,6	280	15,9	24	290	90	5,66	GBM280PN6
17,6	315	17,9	22	324	90	8,635	GBM315PN6
17,6	355	20,1	38	385	90	12,76	GBM355PN6
17,6	400	22,7	41	438	90	18,5	GBM400PN6


HBM Coude à 45° pour soudage bout à bout

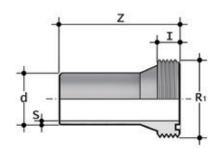
SDR	d (mm)	e (mm)	le1 (mm)	z1 (mm)	PN (bar)	Angle (°)	Kg/pièce	Code
11	20	1,9	52	72	10	45	0,019	HBM20PN10
11	25	2,3	57	76	10	45	0,03	HBM25PN10
11	32	2,9	71	90	10	45	0,056	HBM32PN10
11	40	3,7	73	95	10	45	0,088	HBM40PN10
11	50	4,6	62	76	10	45	0,108	HBM50PN10
11	63	5,8	66	88	10	45	0,203	HBM63PN10
11	75	6,8	71	90	10	45	0,29	HBM75PN10
11	90	8,2	83	105	10	45	0,46	HBM90PN10
11	110	10	93	121	10	45	0,785	HBM110PN10
11	125	11,4	98	137	10	45	1,13	HBM125PN10
11	140	12,7	122	168	10	45	1,685	HBM140PN10
11	160	14,6	143	190	10	45	2,53	HBM160PN10
11	180	16,4	141	196	10	45	3,34	HBM180PN10
11	200	18,2	153	207	10	45	4,54	HBM200PN10
11	225	20,5	153	210	10	45	5,75	HBM225PN10
11	250	22,7	134	220	10	45	7,875	HBM250PN10
11	280	25,4	143	227	10	45	10,06	HBM280PN10
11	315	28,6	155	250	10	45	13,675	HBM315PN10
17,6	50	2,9	62	76	6	45	0,082	HBM50PN6
17,6	63	3,6	66	88	6	45	0,142	HBM63PN6
17,6	75	4,3	71	90	6	45	0,196	HBM75PN6
17,6	90	5,1	82	105	6	45	0,325	НВМ90РN6
17,6	110	6,3	93	121	6	45	0,56	HBM110PN6
17,6	125	7,1	98	137	6	45	0,79	HBM125PN6
17,6	140	8	120	168	6	45	1,245	HBM140PN6
17,6	160	9,1	143	190	6	45	1,85	HBM160PN6
17,6	180	10,2	141	196	6	45	2,335	HBM180PN6
17,6	200	11,4	152	207	6	45	3,13	HBM200PN6
17,6	225	12,8	153	210	6	45	3,97	HBM225PN6
17,6	250	14,2	133	220	6	45	5,78	HBM250PN6
17,6	280	15,9	142	227	6	45	7,285	HBM280PN6
17,6	315	17,9	155	250	6	45	9,85	HBM315PN6


TBM Té à 90° à embout court pour soudage bout à bout

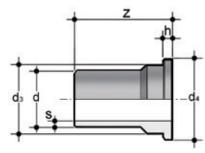
SDR	d (mm)	e (mm)	le1 (mm)	z1 (mm)	Longueur (mm)	kg/pièce	Code
11	20	1,9	11	38	79	0,021	TBM20PN10
11	25	2,3	11	42	84	0,03	TBM25PN10
11	32	2,9	11	44	88	0,044	TBM32PN10
11	40	3,7	11	46	92	0,065	TBM40PN10
11	50	4,6	12	50	100	0,111	TBM50PN10
11	63	5,8	17	67	134	0,235	TBM63PN10
11	75	6,8	19	75	150	0,36	TBM75PN10
11	90	8,2	42	103	206	0,68	TBM90PN10
11	110	10	56	127	254	1,23	TBM110PN10
11	125	11,4	52	125	250	1,6	TBM125PN10
11	140	12,7	63	159	318	2,48	TBM140PN10
11	180	16,4	94	215	430	5,475	TBM180PN10
11	200	18,2	90	220	440	6,81	TBM200PN10
11	250	22,7	68	227	454	10,4	TBM250PN10
11	280	25,4	87	267	534	15,17	TBM280PN10
11	315	28,6	86	283	566	20,33	TBM315PN10
11	355	32,2	103	349	698	30,2	TBM355PN10
11	400	36,3	105	360	720	39,1	TBM400PN10
11	450	40,9	137	419	838	61,129	TBM450PN10
11	500	45,4	160	465	930	84,23	TBM500PN10
17,6	50	2,9	12	50	102	0,084	TBM50PN6
17,6	63	3,6	16	68	136	0,172	TBM63PN6
17,6	75	4,3	14	75	153	0,28	TBM75PN6
17,6	90	5,1	42	100	200	0,54	TBM90PN6
17,6	110	6,3	57	130	260	0,925	TBM110PN6
17,6	125	7,1	50	125	250	1,133	TBM125PN6
17,6	140	8	63	160	320	1,765	TBM140PN6
17,6	180	10,2	97	217	434	4	TBM180PN6
17,6	200	11,4	94	220	440	5,06	TBM200PN6
17,6	250	14,2	69	224	448	7,41	TBM250PN6
17,6	280	15,9	88	266	532	10,68	TBM280PN6
17,6	315	17,9	86	283	566	14,105	TBM315PN6
17,6	355	20,1	103	345	690	21,9	TBM355PN6
17,6	400	22,7	105	367	734	26,3	TBM400PN6
17,6	450	25,5	138	419	838	42,715	TBM450PN6
17,6	500	28,3	165	477	954	59,5	TBM500PN6


TRBMTé réduit à 90° à embout court pour soudage bout à bout

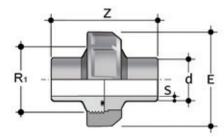
SDR	d1 (mm)	e (mm)	le1 (mm)	le2 (mm)	z1 (mm)	z2 (mm)	Longueur (mm)	kg/pièce	Code
11	90	8,2	53	23	102	85	203	0,56	TRBM9032PN10
11	110	10	66	22	117	91	234	0,94	TRBM11032PN10
11	110	10	66	27	117	101	240	0,95	TRBM11050PN10
11	125	10	54	25	127	107	254	1,36	TRBM12563PN10
11	140	12,7	83	32	146	120	291	1,74	TRBM14063PN10
11	140	12,7	81	35	146	130	291	1,84	TRBM14075PN10
11	140	12,7	81	41	146	130	291	1,96	TRBM14090PN10
11	140	12,7	50	44	146	140	291	2,2	TRBM140110PN10
11	160	14,6	58	47	158	150	315	2,75	TRBM160125PN10
11	180	16,4	125	30	174	140	348	2,98	TRBM18063PN10
11	180	16,4	112	30	174	160	348	3,06	TRBM18075PN10
17,6	140	8	83	32	146	120	291	1,29	TRBM14063PN6
17,6	140	8	81	35	146	120	291	1,37	TRBM14075PN6
17,6	140	8	81	41	146	130	291	1,38	TRBM14090PN6
17,6	140	8	50	44	146	140	291	1,6	TRBM140110PN6
17,6	160	9,1	58	47	158	150	315	2,06	TRBM160125PN6
17,6	180	10,2	125	30	174	140	348	2,16	TRBM18063PN6
17,6	180	10,2	112	30	174	160	348	2,23	TRBM18075PN6
17,6	180	10,2	92	50	174	150	348	2,325	TRBM180110PN6
17,6	250	14,2	135	33	225	195	443	5,83	TRBM250110PN6
17,6	250	14,2	110	58	225	213	440	6,02	TRBM250160PN6


CBM Bouchon à embout long pour soudage bout à bout

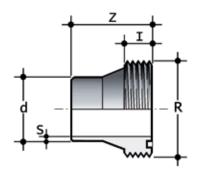
SDR	d (mm)	e (mm)	le1 (mm)	PN (bar)	Longueur (mm)	kg/pièce	Code
11	20	1,9	42	10	49	0,005	CBM20PN10
11	25	2,3	42	10	52	0,006	CBM25PN10
11	40	3,7	51	10	64	0,023	CBM40PN10
11	50	4,6	59	10	72	0,048	CBM50PN10
11	63	5,8	67	10	86	0,087	CBM63PN10
11	75	6,8	73	10	94	0,138	CBM75PN10
11	90	8,2	83	10	112	0,222	CBM90PN10
11	110	10	90	10	124	0,375	CBM110PN10
11	125	11,4	94	10	130	0,52	CBM125PN10
11	140	12,7	99	10	142	0,695	CBM140PN10
11	160	14,6	109	10	162	1,04	CBM160PN10
11	180	16,4	113	10	170	1,375	CBM180PN10
11	200	18,2	117	10	180	1,86	CBM200PN10
11	225	20,5	129	10	205	2,625	CBM225PN10
17,6	63	3,6	66	6	83	0,061	CBM63PN6
17,6	90	5,1	83	6	110	0,16	CBM90PN6
17,6	110	6,3	88	6	121	0,26	CBM110PN6
17,6	125	7,1	92	6	127	0,36	CBM125PN6
17,6	140	8	97	6	136	0,485	CBM140PN6
17,6	160	9,1	109	6	161	0,735	CBM160PN6
17,6	180	10,2	113	6	167	0,99	CBM180PN6
17,6	200	11,4	117	6	179	1,31	CBM200PN6
17,6	225	12,8	203	6	203	1,79	CBM225PN6


Union 3 pièces à embout long pour le soudage bout à bout avec joint en EPDM ou FPM

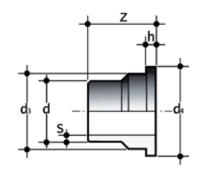
d	DN	R ₁	Е	Z	SDR 11 - S 5 S	g	Code EPDM	Code FPM
20	15	1"	46	190	1,9	70	BBML11020E	BBML11020F
25	20	1" 1/4	56	190	2,3	105	BBML11025E	BBML11025F
32	25	1" 1/2	66	190	2,9	140	BBML11032E	BBML11032F
40	32	2"	79	190	3,7	210	BBML11040E	BBML11040F
50	40	2" 1/4	87	190	4,6	295	BBML11050E	BBML11050F
63	50	2" 3/4	107	190	5,8	480	BBML11063E	BBML11063F


Collet fileté pour écrou union à embout long pour soudage bout à bout pour union 3 pièces BBM-L

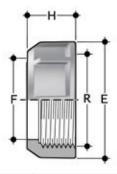
d	R ₁	1	SDR 11 - S 5 S	Z	g	Code
20	1"	13	1,9	95	25	FBBML11020
25	1" 1/4	13	2,3	95	40	FBBML11025
32	1" 1/2	14	2,9	95	50	FBBML11032
40	2"	16	3,7	95	80	FBBML11040
50	2" 1/4	18	4,6	95	115	FBBML11050
63	2" 3/4	20	5,8	95	185	FBBML11063
75	3" 1/2	24	6,8	130	250	FBBML11075
90	4"	25	8,2	150	380	FBBML11090
110	5"	28	10	170	630	FBBML11110


Collet libre pour écrou union à embout long pour soudage bout à bout pour union 3 pièces BBM-L

d	d ₃	d ₄	h	SDR 11 - S 5 S	Z	g	Code
20	25	29,6	5	1,9	95	20	QBBML11020
25	33	38,5	6	2,3	95	40	QBBML11025
32	39	44,2	6	2,9	95	45	QBBML11032
40	51	56	7	3,7	95	75	QBBML11040
50	57	62,2	7	4,6	95	110	QBBML11050
63	72	77,9	8	5,8	95	160	QBBML11063
75	83	96,7	9	6,8	130	290	QBBML11075
90	98	109,4	10	8,2	150	357	QBBML11090
110	118	134,8	11	10	170	630	QBBML11110

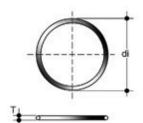

Union 3 pièces à embout court pour le soudage bout à bout avec joint en EPDM ou FPM

d	DN	Ē	Z	S	g	Code EPDM	Code FPM
20	15	46	110	1,9	80	BBMC11020E	BBMC11020F
25	20	56	110	2,3	75	BBMC11025E	BBMC11025F
32	25	66	110	2,9	120	BBMC11032E	BBMC11032F
40	32	79	110	3,7	175	BBMC11040E	BBMC11040F
50	40	87	110	4,6	240	BBMC11050E	BBMC11050F
63	50	107	110	5,8	440	BBMC11063E	BBMC11063F

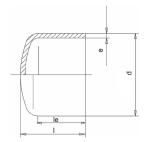

F/BBM-CCollet fileté pour écrou union à embout court pour soudage bout à bout pour union 3 pièces BBM-C

d	R	1	Z	S	g	Code
20	1"	13	55	1,9	20	FBBMC11020
25	1" 1/4	13	55	2,3	27	FBBMC11025
32	1" 1/2	14	55	2,9	40	FBBMC11032
40	2"	16	55	3,7	60	FBBMC11040
50	2 1/4"	18	55	4,6	86	FBBMC11050
63	2 3/4"	20	55	5,8	147	FBBMC11063
75	3 1/2"	24	55	6,8	200	FBBMC11075
90	4"	25	90	8,2	310	FBBMC11090
110	5"	28	90	10	600	FBBMC11110

Collet libre pour union 3 pièces à embout court pour soudage bout à bout pour union 3 pièces BBM-C

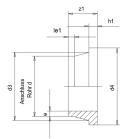

d	d ₃	d ₄	h	Z	S	g	Code
20	25	30	5	55	1,9	20	QBBMC11020
25	33,5	38,5	6	55	2,3	22	QBBMC11025
32	38	44,5	6	55	2,9	36	QBBMC11032
40	49,5	56,2	7	55	3,7	54	QBBMC11040
50	55	62,2	7	55	4,6	76	QBBMC11050
63	70	78,3	8	55	5,8	118	QBBMC11063
75	82,5	96,5	9	55	6,8	250	QBBMC11075
90	97,5	109,5	10	90	8,2	310	QBBMC11090
110	117,5	134,5	11	90	10	610	QBBMC11110

EFGM

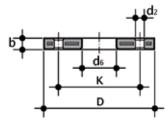

Écrou union à taraudage cylindrique pour unions 3 pièces BIGM, BIFGM, BIFOM, BIROM, BIFXM, BIRXM

R	d BIGM	PN	Е	F	Н	g	Code
1"	20	10	47	28	22	19	EFGM100
1" 1/4	25	10	58	36	25	29	EFGM114
1" 1/2	32	10	65	42	27	40	EFGM112
2"	40	10	78	53	30	57	EFGM200
2" 1/4	50	10	85	59	33	74	EFGM214
2" 3/4	63	10	103	74	38	119	EFGM234

Joint toriqueJoint pour union 3 pièces type BIV, BIFV, BFV, BLV, BIRV, BIFOV, BIROV, BIRXV

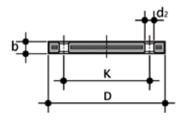

d unio	n 3 pièces	С	de	Т	Code EPDM	Code FPM
	16	3062	15,54	2,62	OR3062E	OR3062F
	20	4081	20,22	3,53	OR4081E	OR4081F
	25	4112	28,17	3,53	OR4112E	OR4112F
	32	4131	32,93	3,53	OR4131E	OR4131F
	40	6162	40,65	5,34	OR6162E	OR6162F
	50	6187	47	5,34	OR6187E	OR6187F
	63	6237	59,69	5,34	OR6237E	OR6237F
	75	6300	75,57	5,34	OR6300E	OR6300F
	90	6362	91,45	5,34	OR6362E	OR6362F
	110	6450	113,67	5,34	OR6450E	OR6450F

RBM Réduction concentrique à embout court pour soudage bout à bout


SDR	d1 (mm)	d2 (mm)	e (mm)	e2 (mm)	le1 (mm)	le2 (mm)	Longueur (mm)	kg/pièce	Code
11	25	20	2,3	1,9	10	5	25	0,004	RBM2520PN10
11	32	20	2,9	1,9	24	24	70	0,013	RBM3220PN10
11	32	25	2,9	2,3	25	25	68	0,015	RBM3225PN10
11	40	20	3,7	1,9			48	0,015	RBM4020PN10
11	40	25	3,7	2,3	22	22	62	0,021	RBM4025PN10
11	40	32	3,7	2,9	25	25	62	0,022	RBM4032PN10
11	50	25	4,6	2,3	25	25	85	0,037	RBM5025PN10
11	50	32	4,6	2,9	27	27	85	0,043	RBM5032PN10
11	50	40	4,6	3,7	30	26	83	0,047	RBM5040PN10
11	63	32	5,8	2,9	27	25	89	0,064	RBM6332PN10
11	63	40	5,8	3,7	28	27	89	0,07	RBM6340PN10
11	63	50	5,8	4,6	25	25	87	0,079	RBM6350PN10
11	75	32	6,8	2,9	30	20	70	0,06	RBM7532PN10
11	75	40	6,8	3,7	30	23	70	0,07	RBM7540PN10
11	75	50	6,8	4,6	30	28	70	0,08	RBM7550PN10
11	75	63	6,8	5,8	25	26	89	0,112	RBM7563PN10
11	90	50	8,2	4,6	28	25	93	0,145	RBM9050PN10
11	90	63	8,2	5,8	28	28	92	0,162	RBM9063PN10
11	90	75	8,2	6,8	31	26	90	0,174	RBM9075PN10
11	110	50	10	4,6	28	20	96	0,205	RBM11050PN10
11	110	63	10	5,8	41	35	110	0,238	RBM11063PN10
11	110	75	10	6,8	40	28	96	0,263	RBM11075PN10
11	110	90	10	8,2	41	40	105	0,28	RBM11090PN10
11	125	75	11,4	6,8	32	19	98	0,299	RBM12575PN10
11	125	90	11,4	8,2	40	40	110	0,345	RBM12590PN10
11	125	110	11,4	10	40	40	100	0,375	RBM125110PN10
11	140	75	12,7	6,8	52	41	135	0,515	RBM14075PN10
11	140	90	12,7	8,2	50	40	130	0,53	RBM14090PN10
11	140	110	12,7	10	50	40	120	0,54	RBM140110PN10
11	140	125	12,7	11,4	53	41	120	0,6	RBM140125PN10
11	160	90	14,6	8,2	48	34	141	0,695	RBM16090PN10
11	160	110	14,6	10	40	34	129	0,685	RBM160110PN10
11	160	125	14,6	11,4	40	32	122	0,725	RBM160125PN10
11	160	140	14,6	12,7	49	38	125	0,725	RBM160140PN10
11	180	90	16,4	8,2	50	40	145	0,8	RBM18090PN10
11	180	110	16,4	10	50	40	150	1,01	RBM180110PN10
11	180	125	16,4	11,4	52	40	145	0,985	RBM180125PN10
11	180	140	16,4	12,7	51	47	135	0,995	RBM180140PN10
11	180	160	16,4	14,6	55	52	135	1,02	RBM180160PN10
11	200	140	18,2	12,7	63	43	148	1,24	RBM200140PN10
11	200	160	18,2	14,6	63	50	145	1,29	RBM200160PN10
11	200	180	18,2	16,4	50	45	145	1,3	RBM200180PN10
11	225	140	20,5	12,7	61	48	157	1,575	RBM225140PN10

SDR	d1 (mm)	d2 (mm)	e (mm)	e2 (mm)	le1 (mm)	le2 (mm)	Longueur (mm)	kg/pièce	Code
11	225	160	20,5	14,6	65	54	161	1,655	RBM225160PN10
11	225	180	20,5	16,4	60	58	163	1,77	RBM225180PN10
11	225	200	20,5	18,2	63	53	145	1,92	RBM225200PN10
11	250	160	22,7	14,6	63	53	170	2,155	RBM250160PN10
11	250	180	22,7	16,4	64	58	175	2,325	RBM250180PN10
11	250	200	22,7	18,2	64	64	180	2,5	RBM250200PN10
11	250	225	22,7	20,5	75	83	180	2,75	RBM250225PN10
11	280	200	25,4	18,2	75	54	214	3,45	RBM280200PN10
11	280	250	25,4	22,7	72	62	202	1,98	RBM280250PN10
11	315	200	28,6	18,2	80	50	230	4,52	RBM315200PN10
11	315	225	28,6	20,5	84	60	237	5,11	RBM315225PN10
11	315	250	28,6	22,7	86	63	231	5,105	RBM315250PN10
11	315	280	28,6	25,4	80	70	222	5,195	RBM315280PN10
17,6	50	32	2,9	2,9	20	20	70	0,018	RBM5032PN6
17,6	50	40	2,9	2,3	11	10	50	0,031	RBM5040PN6
17,6	63	50	3,6	2,9	25	25	87	0,055	RBM6350PN6
17,6	75	63	4,3	3,6	26	28	91	0,081	RBM7563PN6
17,6	90	50	5,1	2,9	30	28	93	0,08	RBM9050PN6
17,6	90	63	5,1	3,6	28	28	92	0,11	RBM9063PN6
17,6	90	75	5,1	4,3	31	26	91	0,12	RBM9075PN6
17,6	110	50	6,3	2,9	28	19	90	0,139	RBM11050PN6
17,6	110	63	6,3	3,6	40	36	105	0,17	RBM11063PN6
17,6	110	75	6,3	4,3	40	28	96	0,17	RBM11075PN6
17,6	110	90	6,3	5,1	42	42	100	0,192	RBM11090PN6
17,6	125	63	7,1	3,6	35	20	97	0,195	RBM12563PN6
17,6	125	75	7,1	4,3	32	19	98	0,225	RBM12575PN6
17,6	125	90	7,1	5,1	41	41	114	0,271	RBM12590PN6
17,6	125	110	7,1	6,3	42	42	103	0,25	RBM125110PN6
17,6	140	75	8	4,3	53	40	135	0,28	RBM14075PN6
17,6	140	90	8	5,1	53	42	130	0,3	RBM14090PN6 RBM140110PN6
17,6 17,6	140 160	110 90	9,1	6,3 5,1	35 48	28 34	120 141	0,32 0,495	RBM16090PN6
17,6	160	110	9,1	6,3	40	34	129	0,495	RBM160110PN6
17,6	160	125	9,1	7,1	52	42	123	0,505	RBM160125PN6
17,6	160	140	9,1	8	51	47	120	0,56	RBM160140PN6
17,6	180	90	10,2	5,1	53	42	145	0,6	RBM18090PN6
17,6	180	110	10,2	6,3	55	42	150	0,62	RBM180110PN6
17,6	180	125	10,2	7,1	52	42	135	0,62	RBM180125PN6
17,6	180	140	10,2	8	52	47	139	0,64	RBM180140PN6
17,6	180	160	10,2	9,1	55	52	135	0,7	RBM180160PN6
17,6	200	140	11,4	8	62	42	146	0,827	RBM200140PN6
17,6	200	160	11,4	9,1	62	52	145	0,895	RBM200160PN6
17,6	200	180	11,4	10,2	50	45	145	0,92	RBM200180PN6
17,6	225	140	12,7	8	52	49	150	1,06	RBM225140PN6
17,6	225	160	12,8	9,1	65	53	162	1,15	RBM225160PN6
17,6	225	180	12,8	10,2	64	59	160	1,16	RBM225180PN6
17,6	225	200	12,8	11,4	63	53	160	1,32	RBM225200PN6
17,6	250	160	14,2	9,1	63	53	170	1,53	RBM250160PN6
17,6	250	180	14,2	10,2	64	58	175	1,615	RBM250180PN6
17,6	250	200	14,2	11,4	64	64	180	1,76	RBM250200PN6
17,6	250	225	14,2	12,8	60	55	185	1,89	RBM250225PN6
17,6	280	200	15,9	11,4	65	65	185	2,34	RBM280200PN6
17,6	280	225	15,9	12,8	70	55	200	2,37	RBM280225PN6
17,6	280	250	15,9	14,2	85	92	200	2,54	RBM280250PN6
17,6	315	200	17,9	11,4	95	85	230	3,22	RBM315200PN6
17,6	315	225	17,9	12,8	84	60	238	3,32	RBM315225PN6
17,6	315	250	17,9	14,2	84	64	233	3,45	RBM315250PN6
17,6	315	280	17,9	15,9	80	70	222	3,51	RBM315280PN6

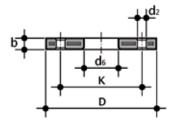
QBMCollet à embout court pour soudage bout à bout pour brides folles ISO/DIN ODB


SDR	d (mm)	e (mm)	d3 (mm)	d4 (mm)	le1 (mm)	z1 (mm)	h1 (mm)	PN (bar)	kg/pièce	Code
11	20	1,9	27	46	29	52	8	10	0,018	QBM20PN10
11	25	2,3	32	59	27	52	10	10	0,033	QBM25PN10
11	32	2,9	40	68	26	50	10	10	0,044	QBM32PN10
11	40	3,7	49	78	24	52	11	10	0,065	QBM40PN10
11	50	4,6	61	89	27	57	12	10	0,085	QBM50PN10
11	63	5,8	75	102	25	60	14	10	0,14	QBM63PN10
11	75	6,8	88	123	21	55	16	10	0,2	QBM75PN10
11	90	8,2	105	138	43	80	17	10	0,315	QBM90PN10
11	110	10	125	158	37	80	18	10	0,44	QBM110PN10
11	125	11,4	132	158	35	80	25	10	0,54	QBM125PN10
11	140	12,7	155	188	39	83	25	10	0,715	QBM140PN10
11	160	14,6	175	212	52	105	25	10	1,12	QBM160PN10
11	180	16,4	186	212	65	127	30	10	0,92	QBM180PN10
11	200	18,2	232	268	50	123	32	10	2,16	QBM200PN10
11	225	20,5	235	268	65	127	32	10	2,165	QBM225PN10
11	250	22,7	285	320	67	145	35	10	2,915	QBM250PN10
11	280	25,4	291	320	83	155	35	10	2,9	QBM280PN10
11	315	28,6	335	370	80	155	35	10	5,525	QBM315PN10
11	355	32,2	373	430	90	180	40	10	7,73	QBM355PN10
11	400	36,3	427	482	95	195	46	10	10,485	QBM400PN10
11	450	40,9	514	585	60	139	60	10	13,35	QBM450PN10
11	500	45,4	530	585	60	138	60	10	12,73	QBM500PN10
17,6	50	2,9	61	88	27	57	12	6	0,076	QBM50PN6
17,6	63	3,6	75	102	25	60	14	6	0,122	QBM63PN6
17,6	75	4,3	89	123	20	54	16	6	0,18	QBM75PN6
17,6	90	5,1	105	138	43	80	17	6	0,27	QBM90PN6
17,6	110	6,3	125	158	37	80	18		0,377	QBM110PN6
17,6	125	7,1	132	158	45	88	18	6	0,38	QBM125PN6
17,6	140	8	155	188	39	83	18	6	0,51	QBM140PN6
17,6	160	9,1	175	212	52	100	18	6	0,745	QBM160PN6
17,6	180	10,2	186	212	62	83	20	6	0,65	QBM180PN6
17,6	200	11,4	233	268	58	121	24	6	1,756	QBM200PN6
17,6	225	12,8	235	268	65	121	24	6	1,46	QBM225PN6
17,6	250	14,2	285	320	72	140	25	6	2,17	QBM250PN6
17,6	280	15,9	291	321	88	150	25	6	1,975	QBM280PN6
17,6	315	17,9	335	370	90	155	25	6	3,6	QBM315PN6
17,6	355	20,1	373	430	99	184	30	6	5,4	QBM355PN6
17,6	400	22,7	427	482	98	195	33	6	7,12	QBM400PN6
17,6	450	25,5	514	585	60	142	46	6	10,7	QBM450PN6
17,6	500	28,4	530	585	60	138	46	6	9,195	QBM500PN6
17,6	560	31,7	615	685	60	139	50	6	13,15	QBM560PN6
17,6	630	35,7	642	685	60	140	50	6	11,685	QBM630PN6
17,6	800	45,3	840	905	60	150	54	6	19	QBM800PN6

ODB
Bride folle en acier revêtu de PP/FRP selon EN/ISO/DIN pour collets QBM. Perçage PN 10/16 jusqu'à d180, PN 10 de d200 à d400

d	DN	*PMA (bar)	b	d_2	d ₆	D	K	М	n	**(Nm)	g	Code
20	15	16	12	14	28	95	65	M12	4	15	232	ODB020
25	20	16	14	14	34	105	75	M12	4	15	288	ODB025
32	25	16	14	14	42	115	85	M12	4	15	544	ODB032
40	32	16	16	18	51	140	100	M16	4	20	836	ODB040
50	40	16	16	18	62	150	110	M16	4	30	902	ODB050
63	50	16	19	18	78	165	125	M16	4	35	1074	ODB063
75	65	16	19	18	92	188	145	M16	4	40	1368	ODB075
90	80	16	21	18	109	200	160	M16	8	40	1516	ODB090
110	100	16	22	18	128	220	180	M16	8	40	1960	ODB110
125	100	16	22	18	134	220	180	M16	8	40	1938	ODB125
140	125	16	26	18	158	250	210	M16	8	50	2866	ODB140
160	150	16	27	22	178	285	240	M20	8	60	3576	ODB160
180	150	16	27	22	191	285	240	M20	8	60	3298	ODB180
200	200	16	28	22	235	340	295	M20	8	70	5032	ODB200
225	200	16	28	22	238	340	295	M20	8	70	4900	ODB225
250	250	16	31	22	288	395	350	M20	12	80	10182	ODB250
280	250	16	31	22	294	395	350	M20	12	80	9860	ODB280
315	300	16	34	22	338	445	400	M20	12	100	13150	ODB315
355	350	16	40	22	376	514	460	M20	16	160	22200	ODB355
400	400	16	40	26	430	571	515	M24	16	170	26214	ODB400

^{*}PMA pression de service maximale admissible **couple de serrage nominal

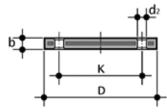


ODBC

Bride pleine en acier revêtu de PP/FRP selon EN/ISO/DIN. Perçage PN 10/16 jusqu'à d160/180, PN 10 de d200/225 à d400

d	DN	*PMA (bar)	b	d ₂	D	К	М	n	**(Nm)	g	Code
20	15	16	12	14	95	65	M12	4	15	290	ODBC020
25	20	16	12	14	105	75	M12	4	15	390	ODBC025
32	25	16	16	14	115	85	M12	4	15	520	ODBC032
40	32	16	16	18	140	100	M16	4	25	800	ODBC040
50	40	16	16	18	150	110	M16	4	35	940	ODBC050
63	50	16	16	18	165	125	M16	4	35	1150	ODBC063
75	65	16	18	18	185	145	M16	4	40	1640	ODBC075
90	80	16	18	18	200	160	M16	8	40	1960	ODBC090
110/125	100	16	20	18	220	180	M16	8	45	2720	ODBC110
140	125	16	24	18	250	210	M16	8	50	3920	ODBC140
160/180	150	16	24	22	285	240	M20	8	60	5060	ODBC160
200/225	200	16	24	22	340	295	M20	8	70	7800	ODBC200
250/280	250	10	30	22	409	350	M20	12	100	15400	ODBC250
315	300	10	34	22	463	400	M20	12	110	26000	ODBC315
355	350	10	42	22	515	460	M20	16	160	39620	ODBC355
400	400	10	46	27	574	515	M24	16	170	50080	ODBC400

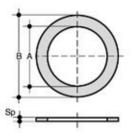
*PMA pression de service maximale admissible **couple de serrage nominal



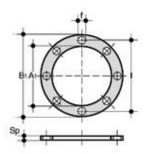
OAB

Bride folle en acier revêtu de PP/FRP selon ANSI B16.5 cl.150 pour collets QBM et QBAM $\,$

d	DN	*PMA (bar)	b	d ₂ mm	d ₂ pouce	d ₆	D	K mm	K pouce	n	**(Nm)	g	Code
1/2"	15	16	12	16	5/8"	28	95	60,45	2" 3/8	4	15	200	OAB012
3/4"	20	16	12	16	5/8"	34	102	69,85	2" 3/4	4	15	240	OAB034
1"	25	16	16	16	5/8"	42	114	79,25	3" 1/8	4	15	490	OAB100
1" 1/4	32	16	16	16	5/8"	51	130	88,9	3" 1/2	4	25	670	OAB114
1" 1/2	40	16	18	16	5/8"	62	133	98,55	3" 7/8	4	35	640	OAB112
2"	50	16	18	20	3/4"	78	162	120,65	4" 3/4	4	35	1000	OAB200
2" 1/2	65	16	18	20	3/4"	92	184	139,7	5" 1/2	4	40	1310	OAB212
3"	80	16	18	20	3/4"	111	194	152,4	6"	4	40	1250	OAB300
4"	100	16	18	20	3/4"	133	229	190,5	7" 1/2	8	40	1660	OAB400
6"	150	16	24	22	7/8"	178	283	241,3	9" 1/2	8	60	3750	OAB600
8"	200	10	24	22	7/8"	236	345	298,45	11" 3/4	8	70	5140	OAB800
10"	250	10	27	25	1"	288	412	361,95	14" 1/4	12	100	8080	OAB810
12"	315	10	32	25	1"	338	487	431,8	17"	12	110	15380	OAB812
14"	355	10	42	28,5	1" 1/8	376	533	476,2	17" 3/4	12	110	24940	OAB814
16"	400	10	44	28,5	1" 1/8	430	596	539,7	18" 13/32	16	110	34770	OAB816


*PMA pression de service maximale admissible **couple de serrage nominal

OABC
Bride pleine en acier revêtu de PP/FRP selon ANSI B16.5 cl.150


d	DN	*PMA (bar)	b	d ₂ mm	d ₂ pouce	D	K mm	K pouce	n	**(Nm)	g	Code
1/2"	15	16	12	16	5/8"	95	60,45	2" 3/8	4	15	200	OABC012
3/4"	20	16	12	16	5/8"	102	69,85	2" 3/4	4	15	240	OABC034
1"	25	16	16	16	5/8"	114	79,25	3" 1/8	4	15	370	OABC100
1" 1/4	32	16	16	16	5/8"	130	88,90	3" 1/2	4	25	530	OABC114
1" 1/2	40	16	18	16	5/8"	133	98,55	3" 7/8	4	35	560	OABC112
2"	50	16	18	20	3/4"	162	120,65	4" 3/4	4	35	810	OABC200
2" 1/2	65	16	18	20	3/4"	184	139,70	5" 1/2	4	40	1070	OABC212
3"	80	16	18	20	3/4"	194	152,40	6"	4	40	1030	OABC300
4"	100	16	18	20	3/4"	229	190,50	7" 1/2	8	40	1570	OABC400
6"	150	16	24	22	7/8"	283	241,30	9" 1/2	8	60	2400	OABC600
8"	200	16	24	22	7/8"	345	298,45	11" 3/4	8	70	3500	OABC800
10"	250	16	27	25	1"	412	361,95	14" 1/4	12	100	6200	OABC810
12"	300	16	32	25	1"	487	431,80	17"	12	110	13040	OABC812

^{*}PMA pression de service maximale admissible **couple de serrage nominal

QHV/X
Joint plat en EPDM et FPM par bridage selon DIN 2501, EN 1092

d	DN	А	В	Sp	Code EPDM	Code FPM
20 - 1/2"	15	20	32	2	QHVX020E	QHVX020F
25 - 3/4"	20	24	38,5	2	QHVX025E	QHVX025F
32 - 1"	25	32	48	2	QHVX032E	QHVX032F
40 - 1" 1/4	32	40	59	2	QHVX040E	QHVX040F
50 - 1" 1/2	40	50	71	2	QHVX050E	QHVX050F
63 - 2"	50	63	88	2	QHVX063E	QHVX063F
75 - 2" 1/2	65	75	104	2	QHVX075E	QHVX075F
90 - 3"	80	90	123	2	QHVX090E	QHVX090F
110 - 4"	100	110	148	3	QHVX110E	QHVX110F

QHV/Y Joint plat en EPDM par bridage selon DIN 2501, EN 1092, autocentré pour perçage PN 10/16

d	DN	A ₁	B ₁	f	1	U	Sp	Code
20 - 1/2"	15	17	95	14	65	4	2	QHVY020E
25 - 3/4"	20	22	107	14	76,3	4	2	QHVY025E
32 - 1"	25	28	117	14	86,5	4	2	QHVY032E
40 - 1" 1/4	32	36	142,5	18	101	4	2	QHVY040E
50 - 1" 1/2	40	45	153,3	18	111	4	2	QHVY050E
63 - 2"	50	57	168	18	125,5	4	2	QHVY063E
75 - 2" 1/2	65	71	187,5	18	145,5	4	3	QHVY075E
90 - 3"	80	84	203	18	160	8	3	QHVY090E
110 - 4"	100	102	223	18	181	8	3	QHVY110E

RACCORDS POUR SOUDAGE BOUT À BOUT

PPH

RACCORDS POUR SOUDAGE BOUT À BOUT

Gamme de raccords destinés au transport de fluides sous pression avec système d'assemblage par vissage et soudage bout à bout.

RACCORDS D'ADAPTATION ISO-BSP

Spécifications technique	s						
Gamme de dimensions	d 20÷ 63 (mm); R 1/2" ÷ 2"						
Pression nominale	SDR 17, 6 (PN6) avec eau à 20 °C SDR 11 (PN10) avec eau à 20 °C						
Plage de température	0 °C à 100 °C						
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494						
	Vissage: ISO 228-1, DIN 2999						
Références normatives	Critères de fabrication : EN ISO 15494						
	Méthodes et conditions requises pour les tests : EN ISO 15494						
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11397						
Matériaux raccords	PP-H						

DONNÉES TECHNIQUES

VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Pour les autres cas une diminution adéquate de la pression nominale PN est nécessaire.

A = SDR 11 ISO-S5 - 5 ans

B = SDR 11 ISO-S5 - 25 ans

C = SDR 17,6 ISO-S8,3 - 5 ans

D = SDR 17,6 ISO-S8,3 - 25 ans

Pressions de service réelles admissibles pour les raccords de tête en PP-H conformément à DIN 16962.

Coefficient de sécurité =1,7

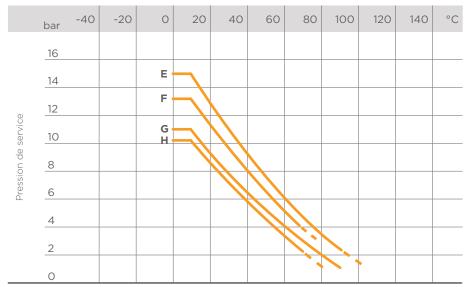
	bar	-40	-20	0	20	40	60	80	100	120	140	°C
	16											
	14			A B								
Œ.	12											
Pression de service	10			CD	$\exists \setminus$							
ion de	8											
Press	6											
	4											
	2											
	0											

Température de service

VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

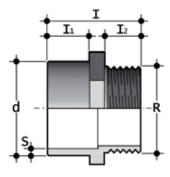
Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Pour les autres cas une diminution adéquate de la pression nominale PN est nécessaire.

E = SDR 11 ISO-S5 - 10 ans


F = SDR 11 ISO-S5 - 50 ans

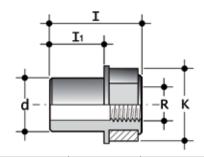
G = SDR 17,6 ISO-S8,3 - 10 ans

H = SDR 17,6 ISO-S8,3 - 50 ans


Pressions de service réelles admissibles pour les raccords de tête conformément à DIN 16962 et pour tuyaux en PP-H conformément à DIN 8077

Coefficient de sécurité =1,7

Température de service


DIMENSIONS

MMBM

Embout d'adaptation avec embout pour soudage bout à bout (d) et embout fileté (R)

SDR	d (mm)	s (mm)	I1 (mm)	R (")	PN (bar)	I2 (mm)	I (mm)	kg/pièce	Code
11	20	1,9	38	1/2	8	14	58	0,009	MMBM20
11	25	2,3	41	3/4	8	14	61	0,012	MMBM25
11	32	2,9	44	1	8	18	69	0,021	MMBM32
11	40	3,7	49	1 1/4	8	19	75	0,037	MMBM40
11	50	4,6	55	1 1/2	8	20	82	0,058	MMBM50
11	63	5,8	63	2	8	21	91	0,095	MMBM63

MFRM

Embout d'adaptation avec embout pour soudage bout à bout (d) et embout taraudé (R)

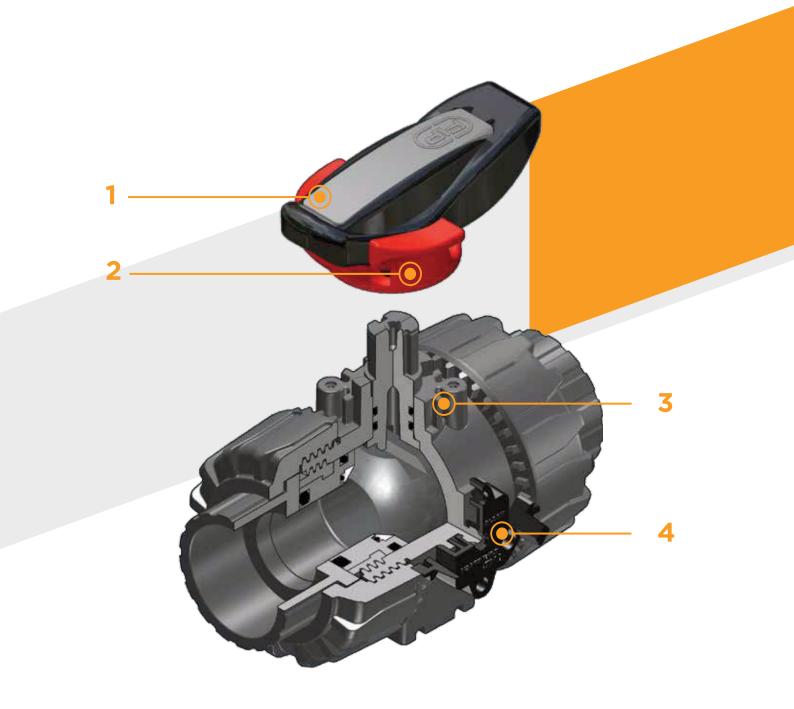
d (mm)	e (mm)	l1 (mm)	R (")	PN (bar)	K (mm)	l (mm)	kg/pièce	Code
20	1,9	39	1/2	8	30	58	0,016	MFBM201/2
25	2,3	41	3/4	8	36	63	0,021	MFBM25
32	2,9	44	1	8	46	71	0,04	MFBM32
40	3,7	49	1 1/4	8	55	79	0,058	MFBM40
50	4,6	55	1 1/2	8	62	84	0,08	MFBM50
63	5,8	63	2	8	75	97	0,14	MFBM63

VKD DN 10 À 50

PPH

Robinet à boisseau sphérique à 2 voies DUAL BLOCK®

VKD **DN 10 À 50**


FIP a développé le robinet à boisseau sphérique à 2 voies de type VKD DUAL BLOCK® pour introduire un haut standard de référence élevé dans la conception des vannes thermoplastiques. VKD est un robinet à boisseau sphérique à deux écrous union à démontage radial et conforme aux exigences les plus sévères des applications industrielles.

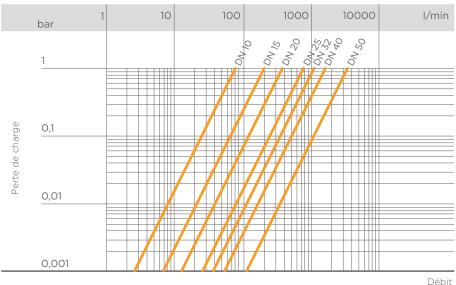
ROBINET À BOISSEAU SPHÉRIQUE À 2 VOIES DUAL BLOCK®

- Système d'assemblage par soudage, par vissage et par bridage
- Système de support des sièges breveté **SEAT STOP**®, qui permet d'effectuer un microréglage des sièges et de minimiser les effets de fond.
- Démontage radial facile de l'installation et remplacement rapide des joints toriques et des sièges sans l'aide d'aucun outil.
- Corps du robinet PN 10 à démontage radial (True union) réalisé par moulage à injection en PP-H doté de perçage pour l'actionnement. Conditions d'essai conformes à ISO 9393.
- Possibilité de démontage des tuyaux en aval avec le robinet en charge en position fermée.
- Boisseau sphérique à passage intégral de type flottant à haute finition de surface.
- Support intégré dans le corps pour le supportage du robinet.
- Le réglage du support des sièges peut être effectué avec le kit de réglage Easytorque.

Spécifications technique	S
Fabrication	Robinet à boisseau sphérique à 2 voies à démontage radial, avec support verrouillé et écrous union verrouillables
Gamme de dimensions	DN 10 à 50
Pression nominale	PN 10 pour de l'eau à 20 °C
Plage de température	0 °C à 100 °C
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494
	Vissage: ISO 228-1, DIN 2999
	Bridage : ISO 7005-1, EN 1092-1, EN ISO 15494, EN 558-1, DIN 2501, ANSI B16.5 cl.150
Références normatives	Critères de fabrication : EN ISO 16135, EN ISO 15494
	Méthodes et conditions requises pour les tests : ISO 9393
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318
	Interfaces pour actionneurs : ISO 5211
Matériaux du robinet	РР-Н
Matériaux d'étanchéité	EPDM, FPM (Joints toriques de dimensions standard); PTFE (sièges)
Options de commande	Commande manuelle ; actionneur électrique ; actionneur pneumatique

- Poignée ergonomique en HIPVC munie d'une clé amovible pour le réglage du support des sièges.
- 2 Blocage de la poignée 0° 90° SHKD (disponible comme accessoire) ergonomiquement actionnable pendant manœuvre et cadenassable.
- Robuste platine de montage pour faciliter et accélérer l'automation même après le montage du robinet sur l'installation, au moyen du module Power Quick (optionnel).
- 4 Système de blocage des écrous union breveté **DUAL BLOCK®** qui assure le maintien du serrage des écrous union même en conditions de service sévères, comme en cas de vibrations ou de dilatations thermiques.

DONNÉES TECHNIQUES


VARIATION DE LA PRESSION EN **FONCTION DE LA TEMPÉRATURE**

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

	bar	-40	-20	0	20	40	60	80	100	120	140	°C
	16											
	14											
9	12											
servic	10											
Pression de service	8											
ressic	6											
ш	4											
	2											
	0								ï			

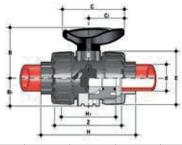
Température de service

DIAGRAMME DES PERTES DE CHARGE

COEFFICIENT DE DÉBIT K_v100

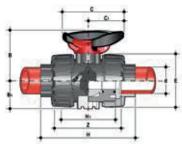
Par coefficient de débit K_v100, on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge $\Delta p = 1$ bar pour une position déterminée du robinet.

Le tableau indique les valeurs K_v100 pour un robinet complètement ouvert.

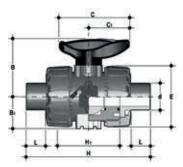

DN	10	15	20	25	32	40	50
K _v 100 I/min	80	200	385	770	1100	1750	3400

COUPLE DE MANŒUVRE À LA PRESSION MAXIMALE DE SERVICE

	Nm	10	15	20	25	32	40	50	DN
	20								
	18								
	16								
uvre	14								
Couple de manœuvre	12								
de M	10								
nble	8								
S	6								
	4								
	2								
	0								


Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.

DIMENSIONS

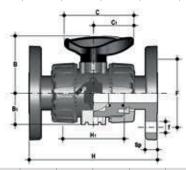

Robinet à boisseau sphérique à 2 voies Dual Block® avec embouts femelles pour soudage dans l'emboîture, série métrique

d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	Z	g	Code EPDM	Code FPM
16	10	10	54	29	67	40	54	102	65	74,5	150	VKDIM016E	VKDIM016F
20	15	10	54	29	67	40	54	102	65	73	145	VKDIM020E	VKDIM020F
25	20	10	65	34,5	85	49	65	114	70	82	218	VKDIM025E	VKDIM025F
32	25	10	69,5	39	85	49	73	126	78	90	298	VKDIM032E	VKDIM032F
40	32	10	82,5	46	108	64	86	141	88	100	480	VKDIM040E	VKDIM040F
50	40	10	89	52	108	64	98	164	93	117	682	VKDIM050E	VKDIM050F
63	50	10	108	62	134	76	122	199	111	144	1166	VKDIM063E	VKDIM063F


VKDIM/SHX
Robinet à boisseau sphérique à 2 voies Dual Block® avec blocage de la poignée et inserts de fixation en acier inoxydable, avec embouts femelles pour soudage dans l'emboîture, série métrique

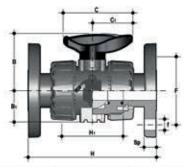
d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	Z	g	Code EPDM	Code FPM
16	10	10	54	29	67	40	54	102	65	74,5	160	VKDIMSHX016E	VKDIMSHX016F
20	15	10	54	29	67	40	54	102	65	73	155	VKDIMSHX020E	VKDIMSHX020F
25	20	10	65	34,5	85	49	65	114	70	82	228	VKDIMSHX025E	VKDIMSHX025F
32	25	10	69,5	39	85	49	73	126	78	90	308	VKDIMSHX032E	VKDIMSHX032F
40	32	10	82,5	46	108	64	86	141	88	100	490	VKDIMSHX040E	VKDIMSHX040F
50	40	10	89	52	108	64	98	164	93	117	692	VKDIMSHX050E	VKDIMSHX050F
63	50	10	108	62	134	76	122	199	111	144	1176	VKDIMSHX063E	VKDIMSHX063F

Robinet à boisseau sphérique à 2 voies Dual Block® avec embouts mâles pour soudage dans l'emboîture, série métrique


d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	g	Code EPDM	Code FPM
16	10	10	54	29	67	40	54	-	-	-	-	VKDDM016E	VKDDM016F
20	15	10	54	29	67	40	54	124	65	16	153	VKDDM020E	VKDDM020F
25	20	10	65	34,5	85	49	65	144	70	18	222	VKDDM025E	VKDDM025F
32	25	10	69,5	39	85	49	73	154	78	20	303	VKDDM032E	VKDDM032F
40	32	10	82,5	46	108	64	86	174	88	22	485	VKDDM040E	VKDDM040F
50	40	10	89	52	108	64	98	194	93	23	672	VKDDM050E	VKDDM050F
63	50	10	108	62	134	76	122	224	111	29	1176	VKDDM063E	VKDDM063F

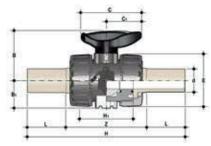
VKDFM

Robinet à boisseau sphérique à 2 voies DUAL BLOCK® avec embouts femelles, taraudage cylindrique gaz


R	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	Z	g	Code EPDM	Code FPM
1/2"	15	10	54	29	67	40	54	110	65	15	80	145	VKDFM012E	VKDFM012F
3/4"	20	10	65	34,5	85	49	65	116	70	16	83	220	VKDFM034E	VKDFM034F
1"	25	10	69,5	39	85	49	73	134	78	19	96	298	VKDFM100E	VKDFM100F
1" 1/4	32	10	82,5	46	108	64	86	153	88	21	110	488	VKDFM114E	VKDFM114F
1" 1/2	40	10	89	52	108	64	98	156	93	21	113	682	VKDFM112E	VKDFM112F
2"	50	10	108	62	134	76	122	186	111	26	135	1181	VKDFM200E	VKDFM200F

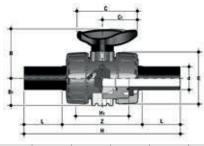
VKDOM

Robinet à boisseau sphérique à 2 voies DUAL BLOCK® avec brides folles EN/ISO/DIN PN 10/16. Écartement selon EN 558-1


d	DN	PN	В	B ₁	С	C ₁	F	f	Н	H ₁	Sp	U	g	Code EPDM	Code FPM
20	15	10	54	29	67	40	65	14	130	65	11	4	387	VKDOM020E	VKDOM020F
25	20	10	65	34,5	85	49	75	14	150	70	14	4	504	VKDOM025E	VKDOM025F
32	25	10	69,5	39	85	49	85	14	160	78	14	4	697	VKDOM032E	VKDOM032F
40	32	10	82,5	46	108	64	100	18	180	88	14	4	1075	VKDOM040E	VKDOM040F
50	40	10	89	52	108	64	110	18	200	93	16	4	1346	VKDOM050E	VKDOM050F
63	50	10	108	62	134	76	125	18	230	111	16	4	2060	VKDOM063E	VKDOM063F

VKDOAM

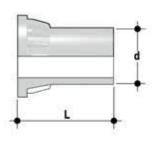
Robinet à boisseau sphérique à 2 voies DUAL BLOCK® avec brides fixes perçage ANSI B16.5 cl.150#FF


d	DN	PN	В	B ₁	С	C ₁	F	f	Н	H ₁	Sp	U	g	Code EPDM	Code FPM
1/2"	15	10	54	29	67	40	60,3	15,9	143	65	11	4	387	VKDOAM012E	VKDOAM012F
3/4"	20	10	65	34,5	85	49	69,9	15,9	172	70	14	4	504	VKDOAM034E	VKDOAM034F
1"	25	10	69,5	39	85	49	79,4	15,9	187	78	14	4	697	VKDOAM100E	VKDOAM100F
1" 1/4	32	10	82,5	46	108	64	88,9	15,9	190	88	14	4	1075	VKDOAM114E	VKDOAM114F
1" 1/2	40	10	89	52	108	64	98,4	15,9	212	93	16	4	1346	VKDOAM112E	VKDOAM112F
2"	50	10	108	62	134	76	120,7	19,1	234	111	16	4	2060	VKDOAM200E	VKDOAM200F

VKDBM

Robinet à boisseau sphérique à 2 voies DUAL BLOCK® avec embouts mâles longs en PP-H SDR11 par soudage bout à bout ou par électrofusion (CVDM)

d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	Z	g	Code EPDM	Code FPM
20	15	10	54	29	67	40	54	175	65	41	93	220	VKDBM020E	VKDBM020F
25	20	10	65	35	85	49	65	210	70	52	106	340	VKDBM025E	VKDBM025F
32	25	10	70	39	85	49	73	226	78	55	116	443	VKDBM032E	VKDBM032F
40	32	10	83	46	108	64	86	243	88	56	131	593	VKDBM040E	VKDBM040F
50	40	10	89	52	108	64	98	261	93	58	145	945	VKDBM050E	VKDBM050F
63	50	10	108	62	134	76	122	293	111	66	161	1607	VKDBM063E	VKDBM063F



VKDBEM

Robinet à boisseau sphérique à 2 voies DUAL BLOCK® avec embouts mâles longs en PE100 SDR 11 pour soudage bout à bout ou électrofusion (CVDE)

d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	Z	g	Code EPDM	Code FPM
20	15	10	54	29	67	40	54	175	65	41	94	210	VKDBEM020E	VKDBEM020F
25	20	10	65	34,5	85	49	65	210	70	52	106	325	VKDBEM025E	VKDBEM025F
32	25	10	69,5	39	85	49	73	226	78	55	117	420	VKDBEM032E	VKDBEM032F
40	32	10	82,5	46	108	64	86	243	88	56	131	570	VKDBEM040E	VKDBEM040F
50	40	10	89	52	108	64	98	261	93	58	145	900	VKDBEM050E	VKDBEM050F
63	50	10	108	62	134	76	122	293	111	66	161	1500	VKDBEM063E	VKDBEM063F

ACCESSOIRES

CVDM

Collets en PP-H SDR 11 PN 10 $\,$ à embout long pour assemblage bout à bout

d	DN	PN	L	SDR	Code
20	15	10	55	11	CVDM11020
25	20	10	70	11	CVDM11025
32	25	10	74	11	CVDM11032
40	32	10	78	11	CVDM11040
52	40	10	84	11	CVDM11050
63	50	10	91	11	CVDM11063

CVDECollets en PE100 SDR 11 PN 16 à embout long, pour assemblage par électrosoudage ou bout à bout.

d	DN	PN	L	SDR	Code
20	15	16	55	11	CVDE11020
25	20	16	70	11	CVDE11025
32	25	16	74	11	CVDE11032
40	32	16	78	11	CVDE11040
52	40	16	84	11	CVDE11050
63	50	16	91	11	CVDE11063

SHKD

Kit de blocage de la poignée 0° - 90° cadenassable

d	DN	Code
16 - 20	10 - 15	SHKD020
25 - 32	20 - 25	SHKD032
40 - 50	32 - 40	SHKD050
63	50	SHKD063

PMKD

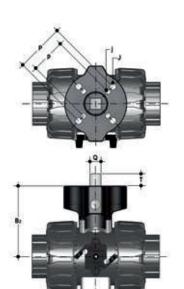
Platine de montage

d	DN	А	В	С	C ₁	C ₂	F	f	f ₁	S	Code
16	10	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
20	15	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
25	20	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
32	25	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
40	32	40	122	30	72	102	6,5	6,3	6,5	6	PMKD2
50	40	40	122	30	72	102	6,5	6,3	6,5	6	PMKD2
63	50	40	122	30	72	102	6,5	6,3	6,5	6	PMKD2

PSKD

Extension de manœuvre

d	DN	А	A ₁	A_2	Е	В	B ₁	B_{min}	Code
16	10	32	25	32	54	70	29	139,5	PSKD020
20	15	32	25	32	54	70	29	139,5	PSKD020
25	20	32	25	40	65	89	34,5	164,5	PSKD025
32	25	32	25	40	73	93,5	39	169	PSKD032
40	32	40	32	50	86	110	46	200	PSKD040
50	40	40	32	50	98	116	52	206	PSKD050
63	50	40	32	59	122	122	62	225	PSKD063

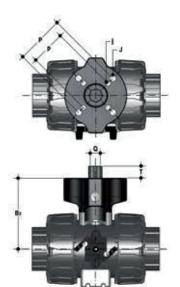


KIT EASYTORQUE

Kit pour le réglage du serrage de support des sièges pour robinets de la série DUAL BLOCK® DN 10 à 50

d	DN	Couples de serrage conseillées*	Code
3/8"-1/2"	10-15	3 N m - 2,21 Lbf ft	KET01
3/4"	20	4 N m - 2,95 Lbf ft	KET01
1"	25	5 N m - 3,69 Lbf ft	KET01
1" 1/4	32	5 N m - 3,69 Lbf ft	KET01
1" 1/2	40	7 N m - 5,16 Lbf ft	KET01
2"	50	9 N m - 6,64 Lbf ft	KET01

^{*}calculés en conditions d'installation idéales.

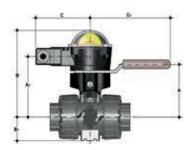


POWER QUICK CP

Le robinet peut être muni d'actionneurs pneumatiques, au moyen d'un module en PP-GR reproduisant le gabarit de perçage prévu par la norme ISO 5211

d	DN	B ₂	Q	Т	рхј	PxJ	Code
16	10	58	11	12	F03 x 5,5	F04 x 5,5	PQCP020
20	15	58	11	12	F03 x 5,5	F04 x 5,5	PQCP020
25	20	69	11	12	*F03 x 5,5	F05 x 6,5	PQCP025
32	25	74	11	12	*F03 x 5,5	F05 x 6,5	PQCP032
40	32	91	14	16	F05 x 6,5	F07 x 8,5	PQCP040
50	40	97	14	16	F05 x 6,5	F07 x 8,5	PQCP050
63	50	114	14	16	F05 x 6,5	F07 x 8,5	PQCP063

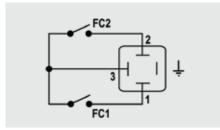
*F04 x 5.5 sur demande

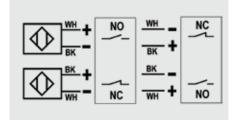


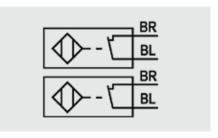
POWER QUICK CE

Le robinet peut être muni d'actionneurs électriques, au moyen d'un module en PP-GR reproduisant le gabarit de perçage prévu par la norme ISO 5211

d	DN	B ₂	Q	Т	рхј	РхJ	Code
16	10	58	14	16	F03 x 5,5	F04 x 5,5	PQCE020
20	15	58	14	16	F03 x 5,5	F04 x 5,5	PQCE020
25	20	69	14	16	*F03 x 5,5	F05 x 6,5	PQCE025
32	25	74	14	16	*F03 x 5,5	F05 x 6,5	PQCE032
40	32	91	14	16	F05 x 6,5	F07 x 8,5	PQCE040
50	40	97	14	16	F05 x 6,5	F07 x 8,5	PQCE050
63	50	114	14	16	F05 x 6,5	F07 x 8,5	PQCE063


*F04 x 5.5 sur demande




MSKD

MSKD est un boîtier de fin de course munie de micro-contacts électro-mécaniques ou inductifs, pour signaler à distance la position du robinet. L'installation sur le robinet manuel est possible en utilisant le module de montage Power Quick. Le montage du boîtier peut être effectué sur le robinet VKD même s'il est déjà en corvine.

d	DN	А	A ₁	В	B ₁	С	C ₁	Code électroméca- niques	Code inductifs	Code Namur
16	10	58	85	132,5	29	88,5	134	MSKD1M	MSKD1I	MSKD1N
20	15	58	85	132,5	29	88,5	134	MSKD1M	MSKD1I	MSKD1N
25	20	70,5	96	143,5	34,5	88,5	134	MSKD1M	MSKD1I	MSKD1N
32	25	74	101	148,5	39	88,5	134	MSKD1M	MSKD1I	MSKD1N
40	32	116	118	165,5	46	88,5	167	MSKD2M	MSKD2I	MSKD2N
50	40	122	124	171,5	52	88,5	167	MSKD2M	MSKD2I	MSKD2N
63	50	139	141	188.5	62	88.5	167	MSKD2M	MSKD2I	MSKD2N

Électromécaniques

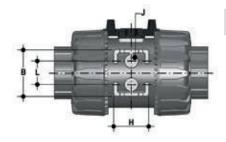
Inductifs Namur

WH = blanc; BK = noir; BL = bleu; BR = marron

Type interrupteurs	Débit	Durée [actionnements]	Tension de service	Tension nominale	Courant d'exercice	Tension de coupure	Courant à vide	Protection
Électromécaniques	250 V - 5 A	3 x 10 ⁷	-	-	-	-	-	IP65
Inductifs	-	-	5 à 36 V	-	4 à 200 mA	< 4,6 V	< 0,8 mA	IP65
Namur*	-	-	7,5 à 30 V DC**	8,2 V DC	< 30 mA**	-	-	IP65

 $^{^{\}ast}$ À utiliser avec un amplificateur ** À l'extérieur des zones à risque d'explosion

COLLIERS ET SUPPORTAGE

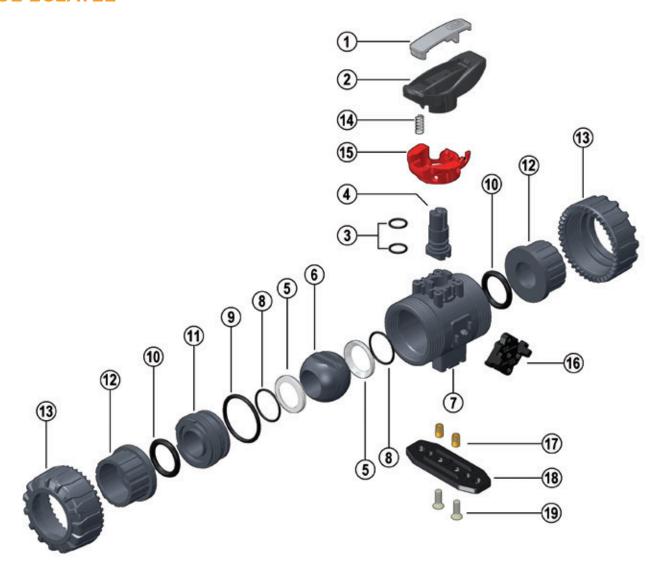


Manuelles ou motorisés, tous les robinets doivent, dans de nombreuses applications, être supportés comme il se doit.

Les robinets de la série VKD intègrent une interface de fixation qui permet un ancrage direct sur le corps du robinet sans devoir recourir à d'autres composants.

Pour les installations murales ou à panneau il est possible d'employer la platine de montage PMKD prévue à cet effet, fournie comme accessoire, qui doit être tout d'abord fixée au robinet.

La platine PMKD permet aussi d'aligner le robinet VKD avec les colliers FIP de type ZIKM ainsi que d'aligner des robinets de dimensions différentes.



d	DN	В	Н	L	J*
16	10	31,5	27	20	M4 x 6
20	15	31,5	27	20	M4 x 6
25	20	40	30	20	M4 x 6
32	25	40	30	20	M4 x 6
40	32	50	35	20	M6 x 10
50	40	50	35	20	M6 x 10
63	50	60	40	20	M6 x 10

^{*} Avec écrous d'ancrage

COMPOSANTS

VUE ÉCLATÉE

- 1. Insert de poignée (PVC 1)
- 2 · Poignée (HIPVC 1)
- Joint torique de la tige de manœuvre (EPDM ou FPM - 2)*
- 4 · Tige de manœuvre (PP-H 1)
- 5 · Siège (PTFE 2)*
- 6 · Boisseau sphérique (PP-H 1)
- 7 · Corps (PP-H 1)
- 8 · Joint torique servant de rappel

- de compression du siège (EPDM ou FPM - 2)*
- 9 · Joint d'étanchéité torique radial (EPDM ou FPM 1)*
- 10 · Joint d'étanchéité torique du collet (EPDM ou FPM - 2)*
- 11 · Support de siège (PP-H 1)
- **12** · Manchon (PP-H 2)*
- 13 · Écrou union (PP-H 2)

- 14 · Ressort (Acier INOX 1)**
- 15 · Blocage de sécurité pour poignée (PP-GR 1)**
- 16 · DUAL BLOCK® (POM 1)
- 17 · Écrous d'ancrage (Acier INOX ou Laiton - 2)**
- 18 · Platine de fixation (PP-GR 1)**
- 19 · Vis (Acier INOX 2)**

Le matériau du composant et la quantité fournie sont indiqués entre parenthèses

^{*} Pièces de rechange

^{**} Accessoires

DÉMONTAGE

- Isoler le robinet de la ligne (décharger la pression et vider le tuyau)
- Débloquer les écrous union en appuyant sur le levier du DUAL BLOCK® (16) vers le centre du robinet (fig. 1-2). Il est aussi possible de retirer complètement le dispositif de blocage du corps du robinet.
- Dévisser complètement les écrous union (13) et extraire le corps par le côté.
- 4) Avant de démonter le robinet, il faut purger les éventuels résidus de liquide restés à l'intérieur en ouvrant à 45° le robinet en position verticale.
- 5) Après avoir mis le robinet en position fermée, enlever de la poignée (2) l'insert (1) et introduire les deux ergots dans les ouvertures correspondantes du support des sièges (11), puis retirer le support en effectuant une rotation dans le sens anti-horaire (fig. 3-4).
- 6) Tirer la poignée (2) vers le haut pour l'extraire de la tige de manœuvre (4).
- 7) Appuyer sur le boisseau sphérique sur le côté opposé à celui où se trouvent les mots « REGOLARE -ADJUST », en veillant à ne pas le rayer, jusqu'à ce que le support des sièges (11) sorte, puis enlever le boisseau sphérique (6).
- 8) Exercer une pression sur la tige de manœuvre (4) vers l'intérieur pour la déloger.
- Retirer les joints toriques (3, 8, 9,
 o et les sièges en PTFE (5) en les ôtant de leur logement, comme il est indiqué sur la vue éclatée.

MONTAGE

- Tous les joints toriques (3, 8, 9, 10) doivent être insérés dans leur logement, comme il est indiqué sur la vue éclatée.
- 2) Insérer la tige de manœuvre (4) en passant par l'intérieur du corps (7).
- 3) Insérer les sièges en PTFE (5) dans les logements du corps (7) et du support (11).
- 4) Insérer le boisseau sphérique (6) et le tourner en position de fermeture.
- 5) Insérer à l'intérieur du corps le support (11) et visser dans le sens horaire en utilisant la poignée (2) jusqu'à la butée.
- 6) Placer le robinet entre les manchons (12) et serrer les écrous union (13), en veillant à ce que les joints d'étanchéité toriques du collet (10) ne sortent pas de leur logement.
- 7) Placer la poignée (2) sur la tige de manœuvre (4).

Remarque: pendant les opérations de montage, lubrifier les joints en élastomère. À ce propos, il est rappelé que les huiles minérales, agressives pour le caoutchouc EPDM, sont déconseillées.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

INSTALLATION

Avant d'effectuer le montage sur l'installation nous vous prions de suivre lesinstructions suivantes :

- Vérifier que les tuyaux auxquels le robinet doit être raccordé sont alignés, de manière à éviter les contraintes mécaniques sur les raccordements union du robinet.
- 2) S'assurer que le système de blocage des écrous union DUAL BLOCK® (16) est installé sur le corps du robinet.
- 3) Débloquer les écrous union en appuyant axialement sur le levier de déblocage pour éloigner le bloc de l'écrou union ; ensuite, le dévisser en tournant dans le sens anti-horaire.
- 4) Procéder au dévissage des trois écrous union (13) et les enfiler sur les tronçons de tuvau.
- 5) Procéder au collage, au soudage ou au vissage des manchons (12) sur les tronçons de tuyau.

- 6) Placer le corps du robinet entre les manchons et serrer complètement les écrous union (13) à la main dans le sens horaire, sans utiliser de clés ou autres outils susceptibles d'abîmer la surface des écrous union.
- 7) Bloquer les écrous union en replaçant le DUAL BLOCK® dans son logement, en appuyant dessus afin que les deux ergots s'enclenchent dans les écrous union.
- 8) Si cela est nécessaire, soutenir le tuyau avec des colliers FIP ou bien grâce à l'interface intégrée dans la vanne (voir le paragraphe « Colliers et Supportage »).

Le robinet VKD peut être muni d'un blocage de poignée pour interdire la rotation de la bille (disponible en tant qu'accessoire).

Quand le blocage (14, 15) est installé, il faut soulever le levier (15) puis faire tourner la poignée (fig. 6-7).

Il est également possible d'installer un cadenas sur la poignée pour protéger l'installation contre toute manipulation (fig. 8).

Le réglage des sièges peut être effectué en utilisant l'insert amovible situé sur la poignée (fig. 3-4).

Un ajustement plus fin des sièges peut être effectué avec le robinet installé sur le tuyau tout simplement en serrant encore davantage les écrous union. Ce micro-réglage, possible seulement avec les robinets FIP grâce au système breveté « Seat stop system », permet de restaurer l'étanchéité, lorsque les sièges en PTFE sont usés à cause du grand nombre de manœuvres.

Les opérations de micro-réglage peuvent également être exécutées avec le kit Easytorque (fig. 5).

AVERTISSEMENTS

- En cas d'utilisation de liquides volatils, comme le peroxyde d'hydrogène (H2O2) ou l'hypochlorite de sodium (NaClO), il est conseillé de contacter le service technique pour des raisons de sécurité. En s'évaporant, ces liquides pourraient créer de dangereuses surpressions dans la zone située entre le corps et la boisseau sphérique.
- Éviter toujours les brusques manœuvres de fermeture et protéger le robinet contre les manœuvres accidentelles.

Fig. 6

Fig. 7

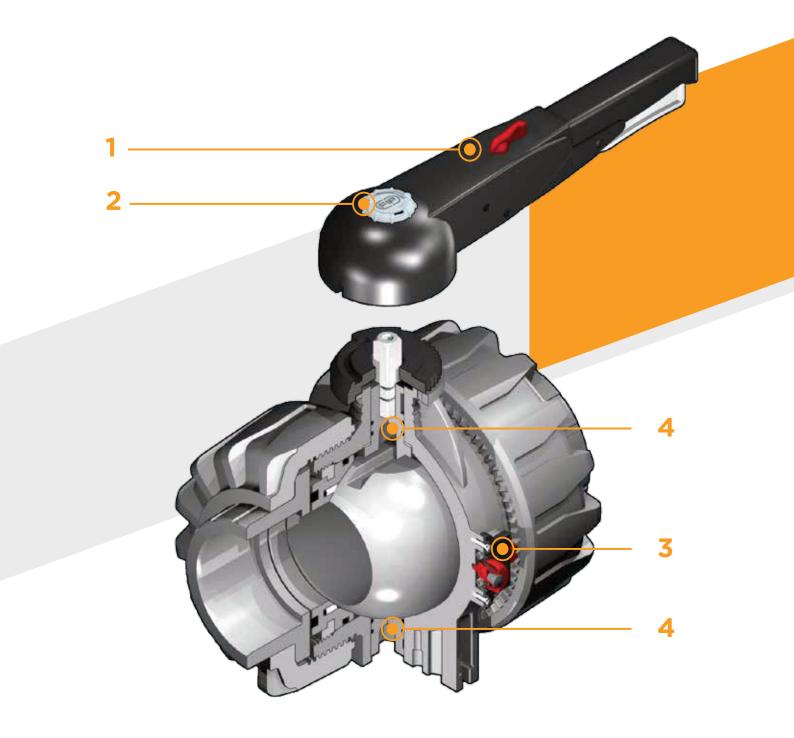
Fig. 8

VKD DN 65 À 100

PPH

Robinet à boisseau sphérique à 2 voies DUAL BLOCK®

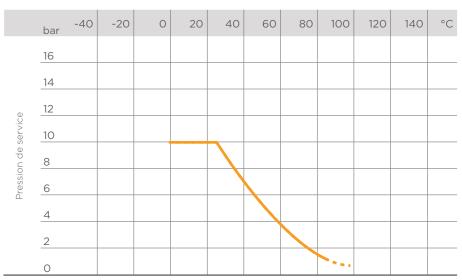
VKD **DN 65 À 100**


FIP a développé le robinet à boisseau sphérique de type VKD DUAL BLOCK® pour introduire un haut standard de référence élevé dans la conception des vannes thermoplastiques. VKD est un robinet à boisseau sphérique à deux écrous union à démontage radial et conforme aux exigences les plus sévères des applications industrielles. Ce robinet est également muni du système de personnalisation Labelling System.

ROBINET À BOISSEAU SPHÉRIQUE À 2 VOIES DUAL BLOCK®

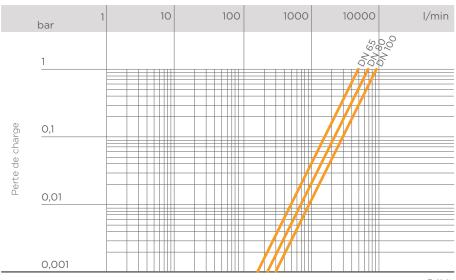
- Système d'assemblage par soudage, par vissage et par bridage
- Système de support des sièges breveté SEAT STOP*, qui permet d'effectuer le microréglage des sièges et de minimiser les effets des poussées axiales.
- Démontage radial facile de l'installation et remplacement rapide des joints toriques et des sièges sans l'aide d'aucun outil.
- Corps du robinet PN 10 à démontage radial (True union) réalisé par moulage à injection en PP-H doté de perçage pour l'actionnement. Conditions d'essai conformes à ISO 9393.
- Possibilité de démontage des tuyaux en aval avec le robinet en charge en position fermée.
- Boisseau sphérique à passage intégral à haute finition de surface.
- Support intégré dans le corps pour la fixation du robinet.
- Possibilité d'installer un réducteur manuel ou des actionneurs pneumatiques et/ou électriques grâce à l'application d'une petite bride en PP-GR à trous standard ISO.
- Tige de commande en acier inox surmoulé, à section carrée conformément à la norme ISO 5211

Spécifications techniques	s
Fabrication	Robinet à boisseau sphérique à 2 voies à démontage radial, avec support et écrous union verrouillés
Gamme de dimensions	DN 65 à 100
Pression nominale	PN 10 pour de l'eau à 20 °C
Plage de température	0 °C à 100 °C
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494
	Vissage : ISO 228-1, DIN 2999
	Bridage : ISO 7005-1, EN 1092-1, EN ISO 15494, EN 558-1, DIN 2501, ANSI B16.5 cl.150
Références normatives	Critères de fabrication : EN ISO 16135, EN ISO 15494
	Méthodes et conditions requises pour les tests : ISO 9393
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318
	Interfaces pour actionneurs : ISO 5211
Matériaux du robinet	РР-Н
Matériaux d'étanchéité	EPDM, FPM; PTFE (sièges)
Options de commande	Commande manuelle ; actionneur électrique ;



- Poignée multifonction ergonomique en HIPVC avec manœuvre rapide possible, blocage et réglage gradué en 10 positions. Possibilité de bloquer la rotation en appliquant un cadenas.
- 2 Système de personnalisation Labelling System: module LCE intégré dans le moyeu composé d'un bouchon de protection transparent et d'une plaquette porte-étiquette personnalisable avec le set LSE (disponible en tant qu'accessoire). La personnalisation possible permet d'identifier le robinet sur l'installation en fonction des exigences spécifiques.
- Système de blocage des écrous union breveté **DUAL BLOCK**® qui assure le maintien du serrage des écrous union même en conditions de service sévères, comme en cas de vibrations ou de dilatations thermiques.
- 4 Tige de manœuvre deux points avec doubles joints toriques pour le centrage du boisseau sphérique et la réduction des couples de manœuvre.

DONNÉES TECHNIQUES

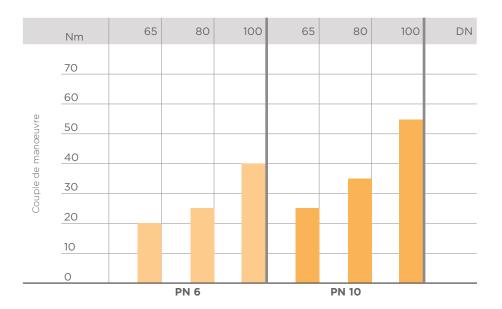

VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

Température de service

DIAGRAMME DES PERTES DE CHARGE

Débit


COEFFICIENT DE DÉBIT K_v100

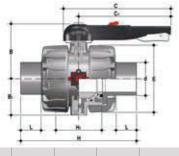
Par coefficient de débit K_v100 , on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge $\Delta p=1$ bar pour une position déterminée du robinet.

Le tableau indique les valeurs K_v100 pour un robinet complètement ouvert.

DN	65	80	100
K _v 100 I/min	5250	7100	9500

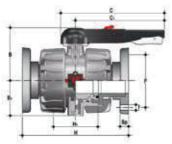
COUPLE DE MANŒUVRE À LA PRESSION MAXIMALE DE SERVICE

Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.


DIMENSIONS

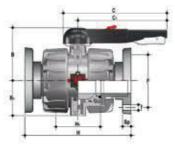
VKDIM

Robinet à boisseau sphérique à 2 voies DUAL BLOCK® avec embouts femelles pour soudage dans l'emboîture, série métrique


d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	Z	g	Code EPDM	Code FPM
75	65	10	164	87	225	175	162	213	133	30	153	3090	VKDIM075E	VKDIM075F
90	80	10	177	105	327	272	202	239	149	33	173	5080	VKDIM090E	VKDIM090F
110	100	10	195	129	385	330	236	268	167	34,5	199	7725	VKDIM110E	VKDIM110F

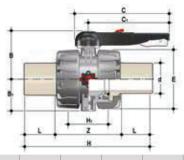
VKDDM

Robinet à boisseau sphérique à 2 voies DUAL BLOCK* avec embouts mâles pour soudage dans l'emboîture, série métrique


d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	g	Code EPDM	Code FPM
75	65	10	164	87	225	175	162	284	133	44	3190	VKDDM075E	VKDDM075F
90	80	10	177	105	327	272	202	300	149	51	5280	VKDDM090E	VKDDM090F
110	100	10	195	129	385	330	236	340	167	61	8010	VKDDM110E	VKDDM110F

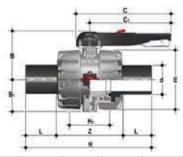
VKDOM

Robinet à boisseau sphérique à 2 voies Dual Block® avec brides fixes perçage EN/ISO/DIN PN10/16. Écartement selon EN 558-1


d	DN	PN	В	B ₁	С	C ₁	F	f	Н	H ₁	Sp	U	g	Code EPDM	Code FPM
75	65	10	164	87	225	175	145	17	290	133	24	4	4500	VKDOM075E	VKDOM075F
90	80	10	177	105	327	272	160	17	310	149	25	8	6455	VKDOM090E	VKDOM090F
110	100	10	195	129	385	330	180	17	350	167	25	8	9090	VKDOM110E	VKDOM110F

VKDOAM

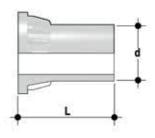
Robinet à boisseau sphérique à 2 voies DUAL BLOCK® avec brides fixes perçage ANSI B16.5 cl.150 #FF. Écartement selon EN 558-1


d	DN	PN	В	B ₁	С	C ₁	F	f	Н	H ₁	Sp	U	g	Code EPDM	Code FPM
2" 1/2	65	10	164	87	225	175	139,7	18	290	133	24	4	4500	VKDOM075E	VKDOM075F
3"	80	10	177	105	327	272	152,4	18	310	149	25	8	6455	VKDOM090E	VKDOM090F
4"	100	10	195	129	385	330	190,5	18	350	167	25	8	9090	VKDOM110E	VKDOM110F

VKDBM

Robinet à boisseau sphérique à 2 voies DUAL BLOCK® avec embouts mâles longs en PP-H SDR 11 pour soudage bout à bout ou par électrofusion (CVDM)

d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	Z	g	Code EPDM	Code FPM
75	65	10	164	87	225	175	162	356	133	71	214	3150	VKDBM075E	VKDBM075F
90	80	10	177	105	327	272	202	390	149	88	214	5240	VKDBM090E	VKDBM090F
110	100	10	195	129	385	330	236	431	167	92	247	7970	VKDBM110E	VKDBM110F



VKDBEM

Robinet à boisseau sphérique à 2 voies DUAL BLOCK® avec embouts mâles longs en PE100 SDR 11 pour soudage bout à bout ou par électrofusion (CVDE)

d	DN	PN	В	B ₁	С	C ₁	Е	н	H ₁	L	Z	g	Code EPDM	Code FPM
75	65	10	164	87	225	175	162	356	133	71	214	3100	VKDBEM075E	VKDBEM075F
90	80	10	177	105	327	272	202	390	149	88	214	5180	VKDBEM090E	VKDBEM090F
110	100	10	195	129	385	330	236	431	167	92	247	7800	VKDBEM110E	VKDBEM110F

ACCESSOIRES

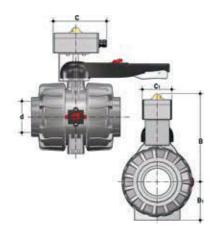
CVDM

Collets en PP-H SDR 11 PN 10 à embout long pour assemblage bout à bout.

d	DN	PN	L	SDR	Code
75	65	10	111	11	CVDM11075
90	80	10	118	11	CVDM11090
100	100	10	132	11	CVDM11110

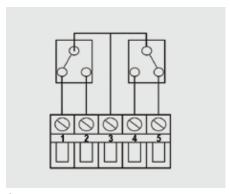
CVDF

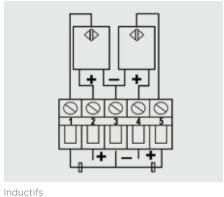
Collets en PE100 SDR 11 PN 16 à embout long, pour assemblage par électrosoudage ou bout à bout.

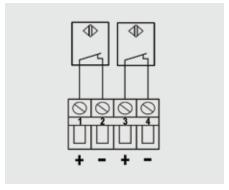

d	DN	PN	L	SDR	Code
75	65	16	111	11	CVDE11075
90	80	16	118	11	CVDE11090
100	100	16	132	11	CVDE11110

CE

Set de personnalisation et d'impression des étiquettes pour poignée Easyfit, composé de feuilles d'adhésifs prédécoupés et du logiciel pour la création pas à pas des étiquettes.

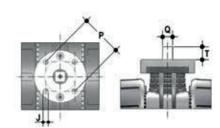

d	DN	Code
75	65	LSE040
90	80	LSE040
110	100	LSE040




VKD-MS

Le kit MS permet de munir le robinet manuel VKD d'une boîte de fin de course avec des microcontacts électromécaniques ou inductifs, pour signaler à distance la position du robinet (ouvert-fermé). Le montage du kit peut être effectué sur le robinet même s'il est déjà installé sur le système

d	DN	В	B ₁	С	C ₁	Protection	Code électroméca- niques	Code inductifs	Code Namur
75	65	266	87	150	80	IP67	FKMS1M	FKMS1I	FKMS1N
90	80	279	105	150	80	IP67	FKMS1M	FKMS1I	FKMS1N
110	100	297	129	150	80	IP67	FKMS1M	FKMS1I	FKMS1N



Électromécaniques

Namur*

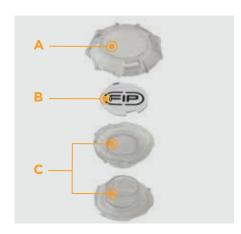
BRIDE POUR LE MONTAGE DES ACTIONNEURS

Le robinet peut être muni d'actionneurs pneumatiques ou électriques standard et de réducteurs à volant pour opérations ingrates, au moyen d'une bride en PP-GR reproduisant le gabarit de perçage prévu par la norme ISO 5211 F07

d	DN	PxJ	Т	Q
75	65	F07 x 9	16	14
90	80	F07 x 9	16	14
110	100	F07 x 9	19	17

^{*} À utiliser avec un amplificateur

COLLIERS ET SUPPORTAGE


Manuels ou motorisés, tous les robinets doivent, dans de nombreuses applications, être supportés comme il se doit.

Les robinets de la série VKD intègrent une interface de fixation qui permet un ancrage direct sur le corps du robinet sans devoir recourir à d'autres composants.

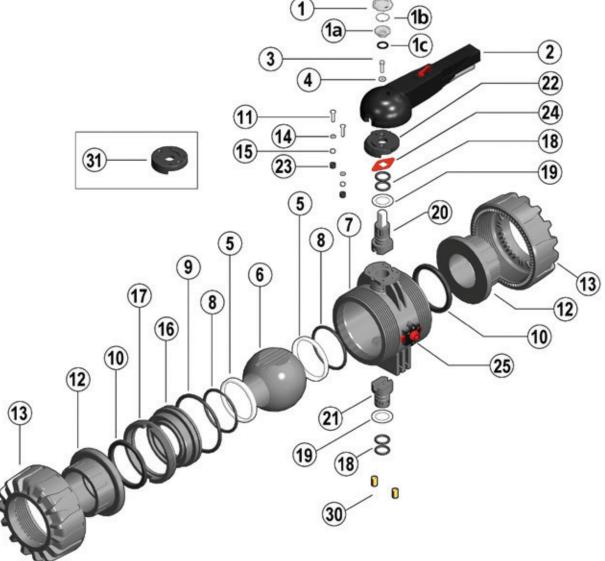
d	DN	J	f	1	I ₁	I ₂
75	65	M6	6,3	17,4	90	51,8
90	80	M6	8,4	21,2	112,6	63
110	100	M8	8,4	21,2	137	67

PERSONNALISATION

Le robinet VKD DN 65 à 100 Easyfit est muni du système d'étiquetage Labelling System.

Ce système permet de réaliser soi-même des étiquettes spéciales à insérer dans la poignée. Il est ainsi extrêmement simple d'appliquer sur les robinets des marques d'entreprise, des numéros de série d'identification ou des indications de service comme, par exemple, la fonction de la vanne au sein de l'installation, le fluide transporté, ainsi que des informations spécifiques pour le service à la clientèle, comme le nom du client ou la date et le lieu où l'installation a été effectuée.

Le module LCE est fourni en série et se constitue d'un bouchon en PVC rigide transparent résistant à l'eau (A-C) et d'une plaquette porte-étiquette blanche (B) de la même matière, marquée FIP sur une face.


La plaquette, insérée à l'intérieur du bouchon, peut être ôtée et, une fois renversée, utilisée pour être personnalisée grâce à l'application d'étiquettes imprimées avec le logiciel fourni avec le set LSE.

Pour appliquer l'étiquette sur la vanne suivre la démarche indiquée ci-dessous :

- 1) Retirer la partie supérieure du bouchon transparent (A) en le tournant dans le sens anti-horaire, comme l'indique le mot « Open » présent sur le bouchon et l'enlever
- 2) Ôter la plaquette porte-étiquette de son logement dans la partie inférieure du bouchon (C)
- 3) Appliquer l'étiquette adhésive sur la plaquette (B) de façon à aligner les profils en respectant la position de la languette.
- 4) Réinsérer la plaquette porte-étiquette dans son logement sur la partie inférieure du bouchon
- 5) Remettre la partie supérieure du bouchon sur son logement en le tournant dans le sens anti-horaire.

COMPOSANTS

VUE ÉCLATÉE

- **1-1a** · Bouchon de protection transparent (PVC 1)
- **1b** · Plaquette porte-étiquette (PVC 1)
- 1c · Joint torique (NBR 1)
- 2 · Poignée (HIPVC 1)
- 3 · Vis (Acier INOX 1)
- 4 · Rondelle (Acier INOX 1)
- 5 · Siège (PTFE 2)*
- 6 · Boisseau sphérique (PP-H-1)
- **7** · Corps (PP-H-1)
- 8 · Joint torique support de siège (EPDM ou FPM - 2)*

- 9 · Joint d'étanchéité torique radial (EPDM ou FPM - 1)*
- 10 · Joint d'étanchéité torique du collet (EPDM ou FPM 2)
- 11 · Vis (Acier INOX 2)
- **12** · Manchon (PP-H 2)
- 13 · Écrou union (PP-H 2)
- 14 · Rondelle (Acier INOX 2)
- 15 · Écrou (Acier INOX 2)
- **16** · Support de siège (PVC-U 1)
- 17 · Anneau d'arrêt (PVC-U 1)
- 18 · Joint torique des tiges de manœuvre (EPDM ou FPM - 4)*

- 19 · Palier (PTFE 2)*
- 20 · Tige de manœuvre supérieure (PP-H/INOX - 1)
- **21** · Tige de manœuvre inférieure (PP-H 1)
- 22 · Disque (PP-GR 1)
- 23 · Bouchon de protection (PE 2)
- 24 · Indicateur de position (PA 1)
- 25 · DUAL BLOCK® (PP-GR + divers 1)
- 30 · Insert fileté (Laiton 2)**
- 31 · Interface pour accessoires et actionneurs (PP-GR 1)**

Le matériau du composant et la quantité fournie sont indiqués entre parenthèses

^{*} Pièces de rechange

^{**} Accessoires

DÉMONTAGE

- 1) Isoler le robinet de la ligne (décharger la pression et vider le tuyau)
- 2) Débloquer les écrous union en tournant le bouton (25) vers la gauche et en orientant la flèche sur le cadenas ouvert (fig. 1).
- 3) Dévisser complètement les écrous union (13) et retirer le corps par le côté (7), (fig. 2)
- 4) Avant de démonter le robinet, il faut purger les éventuels résidus de liquide restés à l'intérieur en ouvrant à 45° le robinet en position verticale.
- 5) Mettre le robinet en position d'ouver-
- 6) Enlever le bouchon de protection sur la poignée (2) et dévisser la vis (3) avec la rondelle (4).
- 7) Retirer la poignée (2).
- 8) Retirer les vis (11) et le disque (22) du corps (7).
- 9) Introduire les deux dents de la clé fournie à cet effet dans les encoches correspondantes de l'anneau d'arrêt (17), puis le retirer, en tournant dans le sens anti-horaire, avec le support de siège (16) (fig. 3).
- 10) Appuyer sur la bille (6), en veillant à ne pas la rayer, puis la retirer du corps.
- 11) Appuyer sur la tige de manœuvre supérieure (20) vers l'intérieur et la retirer du corps et dégager la tige de manœuvre inférieure (21). Ensuite, enlever les paliers (19).
- 12) Retirer les joints toriques (8, 9, 10, 18) et les sièges en PTFE (5) en les ôtant de leur logement, comme il est indiqué sur la vue éclatée.

MONTAGE

- 1) Tous les joints toriques (8, 9, 10, 18) doivent être insérés dans leur logement, comme il est indiqué sur la vue éclatée.
- Enfiler les paliers (19) sur les tiges de manœuvre (20-21) et insérer les tiges de manœuvre dans leur logement à l'intérieur du corps.
- 3) Insérer les sièges en PTFE (5) dans le logement du corps (7) et du support (16).
- 4) Insérer le boisseau sphérique (6) et le tourner en position de fermeture.
- Insérer le support solidaire de l'anneau d'arrêt (17) dans le corps et visser dans le sens horaire en utilisant l'outil prévu à cet effet jusqu'à la butée.
- 6) Placer le disque (22) à crémaillère sur le corps et visser les vis (11), les rondelles (14) et les écrous (15).
- La poignée (2) avec le bouchon de protection (1, 1a, 1b, 1c) doit être placée sur la tige de manœuvre (20) (fig. 4).
- 8) Visser la vis (3) avec la rondelle (4) et placer le bouchon de protection (1, 1a, 1b, 1c).
- Placer le robinet entre les manchons (12) et serrer les écrous union (13), en veillant à ce que les joints d'étanchéité toriques du collet (10) ne sortent pas de leur loge-
- 10) Débloquer les écrous union en tournant le bouton (25) vers la droite et en orientant la flèche sur le cadenas fermé (fig. 1).

Remarque : pendant les opérations de montage, lubrifier les joints en élastomère. À ce propos, il est rappelé que les huiles minérales, agressives pour le caoutchouc EPDM, sont déconseillées.

Fig. 2

Fig. 3

Avant d'effectuer le montage sur l'installation nous vous prions de suivre les instructions suivantes :

- 1) Vérifier que les tuyaux auxquels le robinet doit être raccordé sont alignés, de manière à éviter les contraintes mécaniques sur les raccordements union du robinet.
- 2) Veiller à ce que le système de blocage des DUAL BLOCK ® (25) soit sur la position FREE.
- 3) Procéder au dévissage des trois écrous union (13) et les enfiler sur les tronçons de tuyau.
- 4) Procéder au collage, au soudage ou au vissage des manchons (12) sur les tronçons de tuyau.
- 5) Placer le corps du robinet entre les manchons et serrer complètement les écrous union (13) dans le sens horaire avec une clé appropriée.
- 6) Bloquer les écrous union en tournant le bouton dans le sens horaire (25) (voir le paragraphe « blocage des écrous union »).
- 7) Si cela est nécessaire, soutenir le tuyau avec des colliers FIP ou bien grâce à l'interface intégrée dans la vanne (voir le paragraphe « Colliers et Supportage »).

Effectuer le réglage des sièges en utilisant l'outil fourni à cet effet (fig. 3).

Un ajustement plus fin des sièges peut être effectué avec le robinet installé sur le tuyau tout simplement en serrant encore davantage les écrous union. Ce micro-réglage, possible seulement avec les robinets FIP grâce au système breveté « Seat stop system », permet de rétablir l'étanchéité, lorsque les sièges en PTFE sont usés à cause du grand nombre de manœuvres.

BLOCAGE DES ÉCROUS UNION

En tournant le bouton vers la gauche et en orientant la flèche sur le cadenas ouvert, on déverrouille le DUAL BLOCK®: les écrous union du robinet sont libres de tourner dans le sens horaire et dans le sens contraire.

En tournant le bouton vers la droite et en orientant la flèche sur le cadenas fermé, on verrouille le DUAL BLOCK® : les écrous union du robinet sont bloqués dans une position préétablie.

BLOCAGE DE LA POIGNÉE

Grâce à la poignée multifonction et au bouton de manœuvre rouge situé sur le levier, il est possible d'effectuer une manœuvre 0°- 90° et une manœuvre graduée au moyen des dix positions intermédiaires et un blocage d'arrêt : la poignée peut être bloquée dans chacune des dix positions tout simplement en agissant sur le bouton de manœuvre Free-Lock. Il est également possible de cadenasser la poignée pour protéger l'installation contre toute manipulation.

Le robinet est bidirectionnel et peut être installé dans n'importe quelle position. Il peut également être monté en fin de ligne ou en sortie de réservoir.

AVERTISSEMENTS

- En cas d'utilisation de liquides volatils, comme le peroxyde d'hydrogène (H2O2) ou l'hypochlorite de sodium (NaClO), il est conseillé de contacter le service technique pour des raisons de sécurité. En s'évaporant, ces liquides pourraient créer de dangereuses surpressions dans la zone située entre le corps et la boisseau sphérique.
- Éviter toujours les brusques manœuvres de fermeture et protéger le robinet contre les manœuvres accidentelles.

VKR DN 10 À 50

PPH

Vanne de régulation à boisseau sphérique DUAL BLOCK®

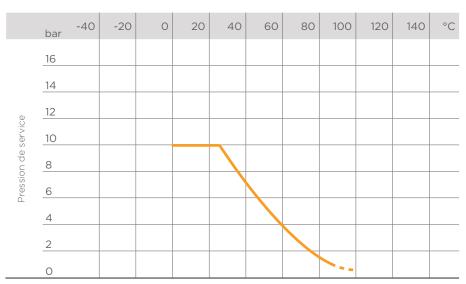
VKR **DN 10 À 50**

La vanne VKR DUAL BLOCK® allie les hautes qualités de fiabilité et de sécurité propres à la vanne à boisseau sphérique VKD à la nouvelle fonction de régulation du débit à courbe caractéristique de type linéaire conforme aux exigences les plus sévères des applications industrielles.

VANNE DE RÉGULATION À BOISSEAU SPHÉ-RIQUE DUAL BLOCK[®]

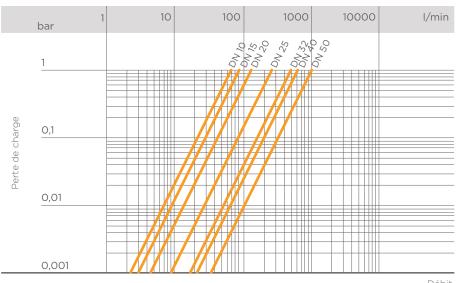
- Système d'assemblage par soudage, par vissage et par bridage
- Système de support des sièges breveté **SEAT STOP***, qui permet d'effectuer un microréglage des sièges et de minimiser les effets de fond.
- Démontage radial facile de l'installation et remplacement rapide des joints toriques et des sièges sans l'aide d'aucun outil.
- Corps vanne PN 10 à démontage radial (True union) réalisé par moulage à injection en PP-H doté d'un trou intégré pour l'actionnement.
 Conditions d'essai conformes à ISO 9393.
- Possibilité de démontage des tuyaux en aval avec la vanne en charge en position fermée.
- Tige de manœuvre à haute finition de surface, avec deux joints toriques et double rainure d'entraînement du boisseau sphérique.
- Support intégré dans le corps pour la fixation de la vanne.
- Le réglage du support des sièges peut être effectué avec le **kit de réglage Easytorque.**
- Options d'application : disponible avec actionneur électrique avec pilotage modulé entrée 4-20 mA / 0-10 V et sortie 4-20 mA / 0-10 V pour une régulation précise du degré d'ouverture de la vanne.
- Vanne adaptée au transport de fluides propres et sans particules en suspension.

Spécifications techniques	
Fabrication	Vanne de régulation à boisseau sphérique à 2 voies à démontage radial, avec support et écrous union verrouillables
Gamme de dimensions	DN 10 à 50
Pression nominale	PN 10 pour de l'eau à 20 °C
Plage de température	0 °C à 100 °C
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494
	Vissage : ISO 228-1, DIN 2999
	Bridage : ISO 7005-1, EN 1092-1, EN ISO 15494, EN 558-1, DIN 2501, ANSI B16.5 cl.150
Références normatives	Critères de fabrication : EN ISO 16135, EN ISO 15494
	Méthodes et conditions requises pour les tests : ISO 9393
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318
	Interfaces pour actionneurs : ISO 5211
Matériaux de la vanne	PP-H
Matériaux d'étanchéité	EPDM, FPM (Joints toriques de dimensions standard); PTFE (sièges)
Options de commande	Commande manuelle ; actionneur électrique



- Poignée multifonction ergonomique en HIPVC munie d'un **indicateur de position** et d'une clé amovible pour le **réglage du support des sièges.**
- Cadran d'indication de la direction du débit et de l'angle d'ouverture avec échelle graduée par 5° pour garantir la clarté et la précision de la lecture.
- Angle de fonctionnement de 90° qui permet l'utilisation d'actionneurs à quart de tour type standard.
- 4 Profil du boisseau sphérique breveté qui assure une régulation linéaire du flux sur toute la plage de réglage, à partir des premiers degrés d'ouverture de la vanne, et garantit des pertes de charge extrêmement réduites.
- 5 Système breveté **DUAL BLOCK***: le système de blocage maintien le serrage des écrous union, même en conditions de service difficiles telles que la présence de vibrations ou de dilatations thermiques.

DONNÉES TECHNIQUES


VARIATION DE LA PRESSION EN **FONCTION DE LA TEMPÉRATURE**

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

Température de service

DIAGRAMME DES PERTES DE CHARGE

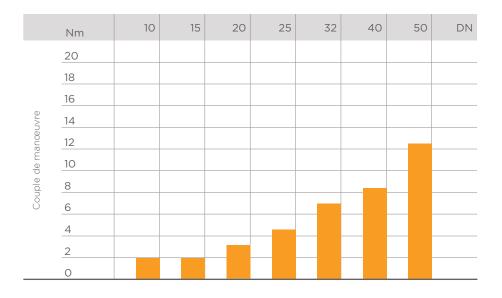
Débit

COEFFICIENT DE DÉBIT K_v100

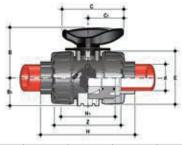
Par coefficient de débit K,100, on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge $\Delta p = 1$ bar pour une position déterminée de la vanne.

Le tableau indique les valeurs K_v100 pour une vanne complètement ouverte.

DN	10	15	20	25	32	40	50
K _v 100 l/min	83	88	135	256	478	592	1068


COURBE DE DÉBIT EN FONCTION DE L'OUVERTURE

Par coefficient de débit relatif, on entend l'évolution du débit en fonction de la course d'ouverture de la vanne.


Angle d'ouverture du boisseau sphérique

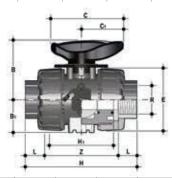
COUPLE DE MANŒUVRE À LA PRESSION MAXIMALE DE SERVICE

Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.


DIMENSIONS

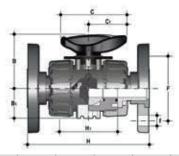
VKRIM

Vanne de régulation à boisseau sphérique DUAL BLOCK® avec embouts femelles pour soudage dans l'emboîture, série métrique


d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	Z	g	Code EPDM	Code FPM
16	10	10	54	29	67	40	54	102	65	74,5	150	VKRIM016E	VKRIM016F
20	15	10	54	29	67	40	54	102	65	73	145	VKRIM020E	VKRIM020F
25	20	10	65	34,5	85	49	65	114	70	82	218	VKRIM025E	VKRIM025F
32	25	10	69,5	39	85	49	73	126	78	90	298	VKRIM032E	VKRIM032F
40	32	10	82,5	46	108	64	86	141	88	100	480	VKRIM040E	VKRIM040F
50	40	10	89	52	108	64	98	164	93	117	682	VKRIM050E	VKRIM050F
63	50	10	108	62	134	76	122	199	111	144	1166	VKRIM063E	VKRIM063F

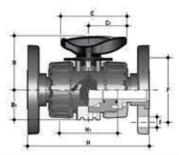
VKRDM

Vanne de régulation à boisseau sphérique DUAL BLOCK® avec embouts mâles pour soudage dans l'emboîture, série métrique


d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	g	Code EPDM	Code FPM
16	10	10	54	29	67	40	54	124	65	16	153	VKRDM016E	VKRDM016F
20	15	10	54	29	67	40	54	144	70	18	222	VKRDM020E	VKRDM020F
25	20	10	65	34,5	85	49	65	154	78	20	303	VKRDM025E	VKRDM025F
32	25	10	69,5	39	85	49	73	174	88	22	485	VKRDM032E	VKRDM032F
40	32	10	82,5	46	108	64	86	194	93	23	672	VKRDM040E	VKRDM040F
50	40	10	89	52	108	64	98	224	111	29	1176	VKRDM050E	VKRDM050F
63	50	10	108	62	134	76	122	224	111	38	1607	VKRDM063E	VKRDM063F

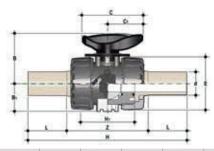
VKRFM

Vanne de régulation à boisseau sphérique DUAL BLOCK® avec embouts femelles, taraudage cylindrique gaz


R	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	Z	g	Code EPDM	Code FPM
3/8"	10	10	54	29	67	40	54	103	65	15	80	145	VKRFM038E	VKRFM038F
1/2"	15	10	54	29	67	40	54	110	65	16	83	220	VKRFM012E	VKRFM012F
3/4"	20	10	65	34,5	85	49	65	116	70	19	96	298	VKRFM034E	VKRFM034F
1"	25	10	69,5	39	85	49	73	134	78	21	110	488	VKRFM100E	VKRFM100F
1" 1/4	32	10	82,5	46	108	64	86	153	88	21	113	682	VKRFM114E	VKRFM114F
1" 1/2	40	10	89	52	108	64	98	156	93	26	135	1181	VKRFM112E	VKRFM112F
2"	50	10	108	62	134	76	122	186	111	26	135	1667	VKRFM200E	VKRFM200F

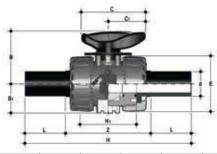
VKROM

Vanne de régulation à boisseau sphérique DUAL BLOCK® avec brides fixes de perçage EN/ISO/DIN PN10/16. Écartement selon EN 558-1


d	DN	PN	В	B ₁	С	C ₁	F	Н	H ₁	U	f	Sp	g	Code EPDM	Code FPM
20	15	10	54	29	67	40	65	130	65	4	14	11	387	VKROM020E	VKROM020F
25	20	10	65	34,5	85	49	75	150	70	4	14	14	504	VKROM025E	VKROM025F
32	25	10	69,5	39	85	49	85	160	78	4	14	14	697	VKROM032E	VKROM032F
40	32	10	82,5	46	108	64	100	180	88	4	18	14	1075	VKROM040E	VKROM040F
50	40	10	89	52	108	64	110	200	93	4	18	16	1346	VKROM050E	VKROM050F
63	50	10	108	62	134	76	125	230	111	4	18	16	2060	VKROM063E	VKROM063F

VKROAM

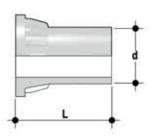
Vanne de régulation boisseau sphérique DUAL BLOCK* avec brides fixes de perçage ANSI B16.5 cl.150 #FF


d	DN	PN	В	B ₁	С	C ₁	F	Н	H ₁	U	f	Sp	g	Code EPDM	Code FPM
1/2"	15	10	54	29	67	40	60,3	143	65	4	15,9	11	387	VKROAM012E	VKROAM012F
3/4"	20	10	65	34,5	85	49	69,9	172	70	4	15,9	14	504	VKROAM034E	VKROAM034F
1"	25	10	69,5	39	85	49	79,4	187	78	4	15,9	14	697	VKROAM100E	VKROAM100F
1" 1/4	32	10	82,5	46	108	64	88,9	190	88	4	15,9	14	1075	VKROAM114E	VKROAM114F
1" 1/2	40	10	89	52	108	64	98,4	212	93	4	15,9	16	1346	VKROAM112E	VKROAM112F
2"	50	10	108	62	134	76	120,7	234	111	4	19,1	16	2060	VKROAM200E	VKROAM200F

VKRBM

Vanne de régulation à boisseau sphérique DUAL BLOCK® avec embouts mâles longs en PP-H par soudage bout à bout ou électrofusion (CVDM)

d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	Z	g	Code EPDM	Code FPM
20	10	10	54	29	67	67	54	175	65	41	93	220	VKRBM020E	VKRBM020F
25	15	10	65	35	85	85	65	210	70	52	106	340	VKRBM025E	VKRBM025F
32	20	10	70	39	85	85	73	226	78	55	116	443	VKRBM032E	VKRBM032F
40	25	10	83	46	108	108	86	243	88	56	131	593	VKRBM040E	VKRBM040F
50	32	10	89	52	108	108	98	261	93	58	145	945	VKRBM050E	VKRBM050F
63	40	10	108	62	134	134	122	293	111	66	161	1607	VKRBM063E	VKRBM063F



VKRBEM

Vanne de régulation boisseau sphérique DUAL BLOCK® avec embouts mâles longs en PE100 SDR 11 par soudage bout à bout ou par électrofusion (CVDE)

d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	Z	g	Code EPDM	Code FPM
20	15	10	54	29	67	40	54	175	65	41	94	210	VKRBEM020E	VKRBEM020F
25	20	10	65	34,5	85	49	65	210	70	52	106	325	VKRBEM025E	VKRBEM025F
32	25	10	69,5	39	85	49	73	226	78	55	117	420	VKRBEM032E	VKRBEM032F
40	32	10	82,5	46	108	64	86	243	88	56	131	570	VKRBEM040E	VKRBEM040F
50	40	10	89	52	108	64	98	261	93	58	145	900	VKRBEM050E	VKRBEM050F
63	50	10	108	62	134	76	122	293	111	66	161	1500	VKRBEM063E	VKRBEM063F

ACCESSOIRES

CVDM

Collets en PP-H SDR 11 PN 10 à embout long, pour assemblage bout à bout.

d	DN	PN	L	SDR	Code
20	15	10	55	11	CVDM11020
25	20	10	70	11	CVDM11025
32	25	10	74	11	CVDM11032
40	32	10	78	11	CVDM11040
52	40	10	84	11	CVDM11050
63	50	10	91	11	CVDM11063

CVDE

Collets en PE100 SDR 11 PN 16 à embout long, pour assemblage par électrosoudage ou bout à bout.

d	DN	PN	L	SDR	Code
20	15	16	55	11	CVDE11020
25	20	16	70	11	CVDE11025
32	25	16	74	11	CVDE11032
40	32	16	78	11	CVDE11040
52	40	16	84	11	CVDE11050
63	50	16	91	11	CVDE11063

PMKD

Platine de montage

d	DN	А	В	С	C ₁	C ₂	F	f	f ₁	S	Code
16	10	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
20	15	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
25	20	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
32	25	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
40	32	40	122	30	72	102	6,5	5,3	5,5	6	PMKD2
50	40	40	122	30	72	102	6,5	5,3	5,5	6	PMKD2
63	50	40	122	30	72	102	6,5	5,3	5,5	6	PMKD2

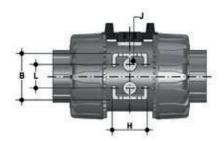
KIT EASYTORQUE

Kit pour le réglage du serrage de support des sièges pour vannes de la série DUAL ${\tt BLOCK^{\circ}}$ DN 10 à 50

d	DN	Couples de serrage conseillées*	Code
3/8" - 1/2"	10-15	3 N m - 2,21 Lbf ft	KET01
3/4"	20	4 N m - 2,95 Lbf ft	KET01
1"	25	5 N m - 3,69 Lbf ft	KET01
1" 1/4	32	5 N m - 3,69 Lbf ft	KET01
1" 1/2	40	7 N m - 5,16 Lbf ft	KET01
2"	50	9 N m - 6,64 Lbf ft	KET01

^{*}calculés en conditions d'installation idéales.

COLLIERS ET SUPPORTAGE

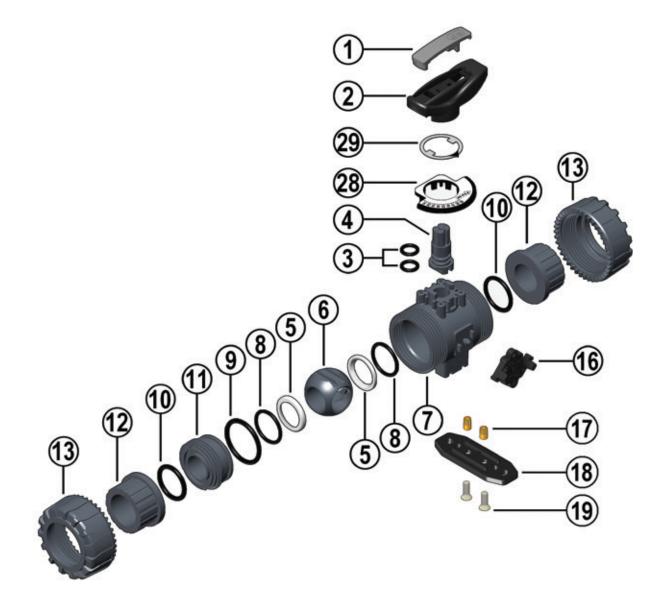


Manuelles ou motorisées, tous les vannes doivent, dans de nombreuses applications, être supportées comme il se doit.

Les vannes de la série VKD intègrent une interface de fixation qui permet un ancrage direct sur le corps de la vanne sans devoir recourir à d'autres composants

Pour les installations murales ou à panneau il est possible d'employer la platine de montage PMKD prévue à cet effet, fournie comme accessoire, qui doit être tout d'abord fixée à la vanne.

La platine PMKD permet aussi d'aligner la vanne VKD avec les colliers FIP de type ZIKM ainsi que d'aligner des vannes de dimensions différentes.



d	DN	В	Н	L	J*
16	10	31,5	27	20	M4 x 6
20	15	31,5	27	20	M4 x 6
25	20	40	30	20	M4 x 6
32	25	40	30	20	M4 x 6
40	32	50	35	20	M6 x 10
50	40	50	35	20	M6 x 10
63	50	60	40	20	M6 x 10

^{*} Avec écrous d'ancrage

COMPOSANTS

VUE ÉCLATÉE

- 1 · Insert de poignée (PVC 1)
- 2 · Poignée (HIPVC 1)
- Joint de la tige de manœuvre (EPDM ou FPM - 2)*
- 4 · Tige de manœuvre (PP-H 1)
- 5 · Siège (PTFE 2)*
- 6 · Boisseau sphérique au profil breveté (PVC-U 1)
- **7** · Corps (PP-H 1)

- 8 · Joint torique de siège (EPDM ou FPM - 2)*
- 9 · Joint d'étanchéité torique radial (EPDM ou FPM - 1)*
- 10 · Joint d'étanchéité torique du collet (EPDM ou FPM 2)*
- 11 · Support de siège (PP-H 1)
- 12 · Manchon (PP-H 2)*
- 13 · Écrou union (PP-H 2)
- 16 · DUAL BLOCK® (POM 1)

- 17 · Écrous d'ancrage (Acier INOX ou Laiton - 2)**
- 18 · Plaquette d'écartement (PP-GR - 1)**
- **19** · Vis (Acier INOX 2)**
- 28 · Cadran gradué (POM-PVC - 1)
- 29 · Indicateur (PVC 1)

Le matériau du composant et la quantité fournie sont indiqués entre parenthèses

^{*} Pièces de rechange

^{**} Accessoires

DÉMONTAGE

- 1) Isoler la vanne de la ligne (décharger la pression et vider le tuyau)
- 2) Débloquer les écrous union en appuyant sur le levier du DUAL BLOCK® (16) vers le centre de la vanne (fig. 1). Il est aussi possible de retirer complètement le dispositif de blocage du corps de la vanne.
- 3) Dévisser complètement les écrous union (13) et extraire le corps par le
- 4) Avant de démonter la vanne, il faut purger les éventuels résidus de liquide restés à l'intérieur en ouvrant à 45° la vanne en position verticale.
- 5) Après avoir mis la vanne en position fermée, enlever de la poignée (2) l'insert (1) et introduire les deux ergots dans les encoches correspondantes du support de siège (11), et le dévisser en le tournant dans le sens anti-horaire
- 6) Tirer la poignée (2) vers le haut pour l'extraire de la tige de manœuvre (4).
- 7) S'assurer que l'indicateur de position (29) reste correctement ancré à la pojanée (2).
- 8) Appuyer sur le boisseau sphérique sur le côté opposé à celui où se trouvent les mots « REGOLARE -ADJUST », en veillant à ne pas le rayer, jusqu'à ce que le support des sièges (11) sorte, puis enlever le boisseau sphérique (6).
- 9) Exercer une pression sur la tige de manœuvre (4) vers l'intérieur pour la
- 10) Tous les joints toriques (3, 8, 9, 10) et les sièges en PTFE (5) doivent être ôtés de leur logement, comme il est indiqué sur la vue éclatée.

MONTAGE

- 1) Tous les joints toriques (3, 8, 9, 10) doivent être insérés dans leur logement, comme il est indiqué sur la vue éclatée.
- 2) Insérer la tige de manœuvre (4) en passant par l'intérieur (7).
- 3) Insérer les sièges en PTFE (5) dans les logements du corps (7) et du support (11).
- 4) Insérer le boisseau sphérique (6) dans le corps en l'orientant comme il est indiqué sur la fig. 3.
- 5) Insérer le support solidaire de la bague d'arrêt (11) dans le corps et visser dans le sens horaire en utilisant l'insert approprié (1) jusqu'à la butée.
- 6) Placer l'indicateur (29) sur la poignée en orientant le pointeur sur la valeur O de l'échelle graduée en s'assurant de maintenir la vanne en position fermée (fig. 2-3).
- 7) Positionner la poignée (2) avec l'insert (1) sur la tige de manœuvre (4).
- 8) Insérer la vanne entre les manchons (12) en vérifiant le sens du débit indiqué sur la plaque (fig. 2), puis serrer les écrous union (13) en veillant à ce que les joints d'étanchéité toriques du collet (10) ne sortent pas de leur logement.

Remarque : pendant les opérations de montage, lubrifier les joints en élastomère. À ce propos, il est rappelé que les huiles minérales, agressives pour le caoutchouc EPDM, sont déconseillées.

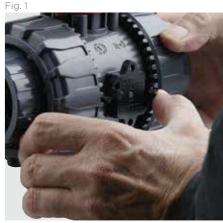


Fig. 3

Avant d'effectuer le montage sur l'installation nous vous prions de suivre les instructions suivantes :

- 1) Vérifier que les tuyaux auxquels le robinet doit être raccordé sont alignés, de manière à éviter les contraintes mécaniques sur les raccordements union du robinet.
- 2) S'assurer que le système de blocage des écrous union DUAL BLOCK® (16) est installé sur le corps de la vanne.
- 3) Débloquer les écrous union (13) en appuyant axialement sur le petit levier de déblocage ; ensuite, le dévisser en tournant dans le sens anti-horaire.
- 4) Procéder au dévissage des trois écrous union (13) et les enfiler sur les tronçons de tuyau.
- 5) Procéder au collage, au soudage ou au vissage des manchons (12) sur les tronçons de tuyau.
- 6) Placer le corps de la vanne entre les manchons en veillant de respecter le sens du flux indiqué sur la plaquette. (fig. 4) Serrer complètement les écrous union dans le sens horaire sans utiliser ni clés, ni autres outils qui pourraient endommager

leur surface.

- 7) Bloquer les écrous union en replaçant le DUAL BLOCK® dans son logement, en appuyant dessus afin que les deux ergots s'enclenchent dans les écrous union.
- 8) Si cela est nécessaire, soutenir le tuyau avec des colliers FIP ou bien grâce à l'interface intégrée dans la vanne (voir le paragraphe « Colliers et Supportage »).

Le réglage des sièges peut être effectué en utilisant l'insert amovible situé sur la poignée.

Un ajustement plus fin des sièges peut être effectué avec le robinet installé sur le tuyau tout simplement en serrant encore davantage les écrous union. Ce micro-réglage, possible seulement avec les vannes FIP grâce au système breveté « Seat stop system », permet de restaurer l'étanchéité, lorsque les sièges en PTFE sont usés à cause du grand nombre de manœuvres.

Les opérations de micro-réglage peuvent également être exécutées avec le kit Easytorque (fig. 5).

AVERTISSEMENTS

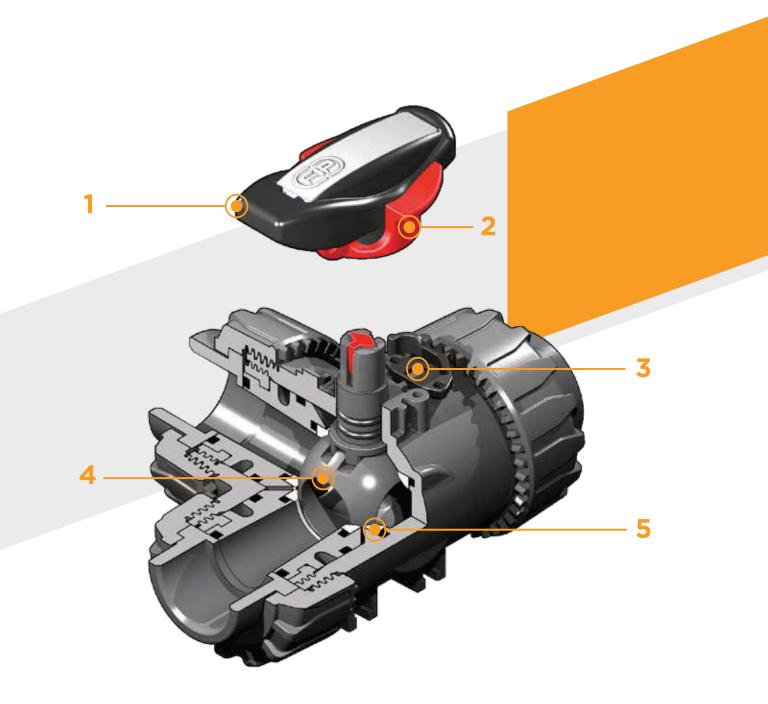
- Éviter toujours les brusques manœuvres de fermeture et protéger la vanne contre les manœuvres accidentelles.

TKD DN 15 À 50

PPH

Robinet à boisseau sphérique à 3 voies DUAL BLOCK®

TKD **DN 15 À 50**


FIP a développé le robinet à boisseau sphérique de type TKD DUAL BLOCK® pour introduire un niveau de référence élevé dans la conception des robinets thermoplastiques. TKD est un robinet à boisseau sphérique de distribution et de mélange à démontage radial conforme aux exigences les plus sévères requises dans les applications industrielles.

ROBINET À BOISSEAU SPHÉRIQUE À 3 VOIES DUAL BLOCK®

- Système d'assemblage par soudage et par filetage.
- Système de support des sièges breveté **SEAT STOP***, qui permet d'effectuer le microréglage des sièges et de minimiser les effets de fond.
- Démontage radial facile de l'installation et remplacement rapide des joints toriques et des sièges sans l'aide d'aucun outil.
- Corps du robinet PN 10 à démontage radial (True union) réalisé par moulage à injection en PP-H doté de perçage pour l'actionnement. Conditions d'essai conformes à ISO 9393.
- Possibilité de démontage des tuyaux en aval avec le robinet en charge en position fermée.
- Tige de manœuvre à haute finition superficielle, avec deux joints toriques et double clavette de raccordement au boisseau sphérique, munie d'un **indicateur visuel de position** du boisseau sphérique pour permettre l'installation correcte de la poignée.
- Support intégré dans le corps pour la fixation du robinet.
- Possibilité d'installer des actionneurs pneumatiques et/ou électriques grâce à la robuste platine de fixation; pour garantir une automation facile et rapide en utilisant le **module Power Quick** (optionnel).

Spécifications technique	s				
Fabrication	Robinet à boisseau sphérique à 3 voies à démontage radial, avec support verrouillé et écrous union verrouillables				
Gamme de dimensions	DN 15 à 50				
Pression nominale	PN 10 pour de l'eau à 20 °C				
Plage de température	0 °C à 100 °C				
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494				
	Vissage : ISO 228-1, DIN 2999				
Références normatives	Critères de fabrication : EN ISO 16135, EN ISO 15494				
	Méthodes et conditions requises pour les tests : ISO 9393				
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318				
	Interfaces pour actionneurs : ISO 5211				
Matériaux de la vanne	РР-Н				
Matériaux d'étanchéité	EPDM, FPM (joints toriques de dimensions standard) ; PTFE (sièges)				
Options de commande	Commande manuelle ; actionneur électrique ; actionneur pneumatique				

- Poignée ergonomique en HIPVC munie d'une clé amovible pour le réglage du support des sièges. Possibilité d'installer le **limiteur de manœuvre LTKD** (disponible en tant qu'accessoire) qui permet la rotation du boisseau sphérique et de la poignée seulement pour les angles préfixés d'ouverture ou de fermeture à 90° ou 180°.
- Système de verrouillage de la poignée à 0 et 90° SHKD (disponible en tant qu'accessoire) ergonomique et cadenassable.
- Système de blocage des écrous union breveté **DUAL BLOCK**® qui assure le maintien du serrage des écrous union même en conditions de service sévères, comme en cas de vibrations ou de dilatations thermiques.
- 4 Boisseau sphérique à passage intégral de type flottant à haute finition de surface avec passage en T ou en L.
- 5 Système d'étanchéité à 4 joints en PTFE permettant de compenser les poussées axiales tout en garantissant une excellente manœuvrabilité et une longue durée.

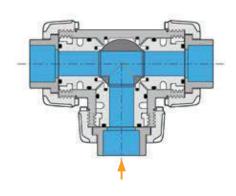
DONNÉES TECHNIQUES

bar

VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

	bar	-40	-20	0	20	40	60	80	100	120	140	°C
	16											
	14											
9	12											
servic	10											
on de	8											
Pression de service	6											
	4											
	2											
	0											

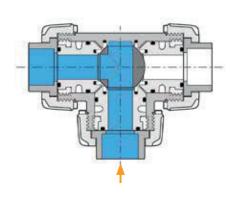

Température de service

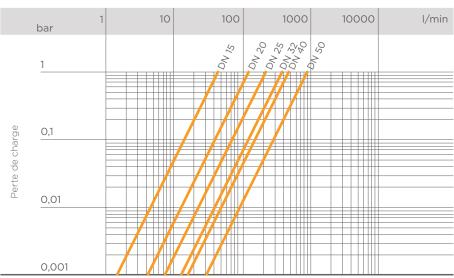
I/min

10000

DIAGRAMME DES PERTES DE CHARGE ET POSITIONS DE TRAVAIL

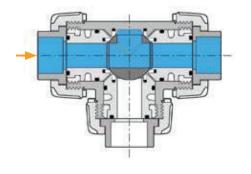
A - Robinet à boisseau sphérique en T : 0°- Mélange

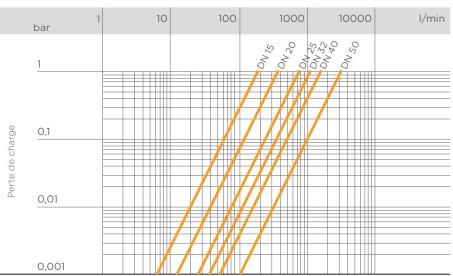



0,001

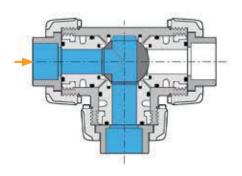
0,001

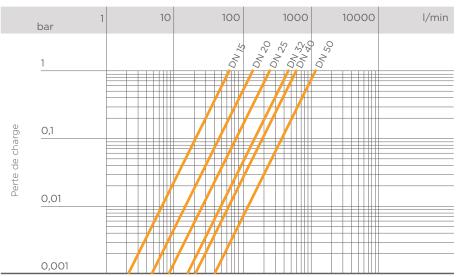
Débit


B - Robinet à boisseau sphérique en T : 90° - Distribution

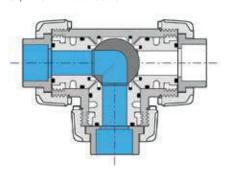


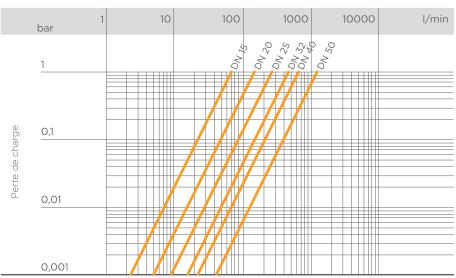
Débit


C - Robinet à boisseau sphérique en T : 180° - Dérivation fermée/flux direct



Débit

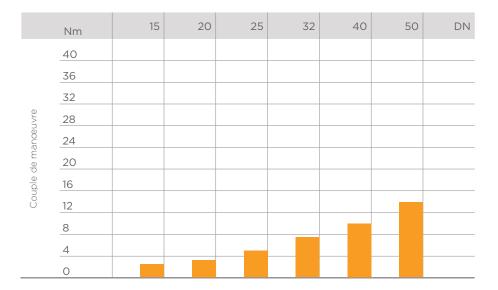

D - Robinet à boisseau sphérique en T : 270° - Distribution



Débit

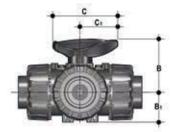
B - Robinet à boisseau sphérique en L : 0°/270° - Distribution

Débit

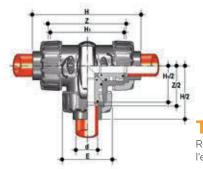

COEFFICIENT DE DÉBIT K_V100

Par coefficient de débit K_v100, on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge ∆p= 1 bar pour une position déterminée du robinet.

Le tableau indique les valeurs $K_{\nu}100$ pour une vanne complètement ouverte.

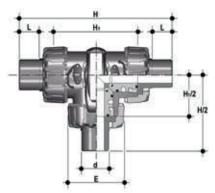

	DN	15	20	25	32	40	50
	Α	35	95	140	270	330	620
	В	55	135	205	390	475	900
K _v 100 l/min	С	195	380	760	1050	1700	3200
	D	65	145	245	460	600	1200
	E	73	150	265	475	620	1220

COUPLE DE MANŒUVRE À LA PRESSION MAXIMALE DE SERVICE


Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.

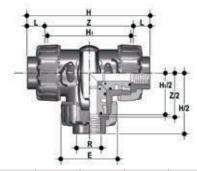
DIMENSIONS

Dimensions communes à toutes les versions.


d	DN	В	B ₁	С	C ₁
20	15	54	29	67	40
25	20	65	35	85	49
32	25	70	39	85	49
40	32	83	46	108	64
50	40	89	52	108	64
63	50	108	62	134	76

TKDIM - LKDIM

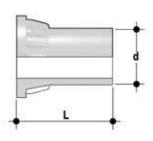
Robinet à boisseau sphérique à 3 voies DUAL BLOCK® avec embouts femelles pour soudage dans l'emboîture, série métrique TKDLV - boisseau sphérique en T / LKDLV - boisseau sphérique en L


d	DN	PN	Е	Н	H ₁	Z	g	TKDIM Code EPDM	TKDIM Code FPM	LKDIM Code EPDM	LKDIM Code FPM
20	15	10	54	117	80	88	195	TKDIM020E	TKDIM020F	LKDIM020E	LKDIM020F
25	20	10	65	144	100	112	350	TKDIM025E	TKDIM025F	LKDIM025E	LKDIM025F
32	25	10	73	158	110	122	505	TKDIM032E	TKDIM032F	LKDIM032E	LKDIM032F
40	32	10	86	184	131	143	820	TKDIM040E	TKDIM040F	LKDIM040E	LKDIM040F
50	40	10	98	219	148	172	1070	TKDIM050E	TKDIM050F	LKDIM050E	LKDIM050F
63	50	10	122	267	179	212	1795	TKDIM063E	TKDIM063F	LKDIM063E	LKDIM063F

TKDDM - LKDDM

Robinet à boisseau sphérique à 3 voies DUAL BLOCK* avec embouts mâles pour soudage dans l'emboîture, série métrique TKDDM - boisseau sphérique en L

d	DN	PN	Е	Н	H ₁	L	g	TKDDM Code EPDM	TKDDM Code FPM	LKDDM Code EPDM	LKDDM Code FPM
20	15	10	54	140	80	16	205	TKDDM020E	TKDDM020F	LKDDM020E	LKDDM020F
25	20	10	65	175	100	18	360	TKDDM025E	TKDDM025F	LKDDM025E	LKDDM025F
32	25	10	73	188	110	20	515	TKDDM032E	TKDDM032F	LKDDM032E	LKDDM032F
40	32	10	86	220	131	22	835	TKDDM040E	TKDDM040F	LKDDM040E	LKDDM040F
50	40	10	98	251	148	23	1100	TKDDM050E	TKDDM050F	LKDDM050E	LKDDM050F
63	50	10	122	294	179	29	1830	TKDDM063E	TKDDM063F	LKDDM063E	LKDDM063F



TKDFM - LKDFM

Robinet à boisseau sphérique à 3 voies DUAL BLOCK® avec embouts femelles, taraudage cylindrique gaz TKDFM - boisseau sphérique en T / LKDFM - boisseau sphérique en L

R	DN	PN	Е	Н	H ₁	L	Z	g	TKDFM Code EPDM	TKDFM Code FPM	LKDFM Code EPDM	LKDFM Code FPM
1/2"	15	10	54	117	80	15	87	195	TKDFM012E	TKDFM012F	LKDFM012E	LKDFM012F
3/4"	20	10	65	143	100	16	114	350	TKDFM034E	TKDFM034F	LKDFM034E	LKDFM034F
1"	25	10	73	157	110	19	120	505	TKDFM100E	TKDFM100F	LKDFM100E	LKDFM100F
1" 1/4	32	10	86	185	131	21	140	820	TKDFM114E	TKDFM114F	LKDFM114E	LKDFM114F
1" 1/2	40	10	98	217	148	21	172	1070	TKDFM112E	TKDFM112F	LKDFM112E	LKDFM112F
2"	50	10	122	266	179	26	211	1795	TKDFM200E	TKDFM200F	LKDFM200E	LKDFM200F

ACCESSOIRES

CVDM

Collets en PP-H SDR 11 PN 10 à embout long pour assemblage bout à bout.

d	DN	PN	L	SDR	Code
20	15	10	55	11	CVDM11020
25	20	10	70	11	CVDM11025
32	25	10	74	11	CVDM11032
40	32	10	78	11	CVDM11040
52	40	10	84	11	CVDM11050
63	50	10	91	11	CVDM11063

CVDE

Collets en PE100 SDR 11 PN 16 à embout long, pour assemblage par électrosoudage ou bout à bout.

d	DN	PN	L	SDR	Code
20	15	16	55	11	CVDE11020
25	20	16	70	11	CVDE11025
32	25	16	74	11	CVDE11032
40	32	16	78	11	CVDE11040
52	40	16	84	11	CVDE11050
63	50	16	91	11	CVDE11063

SHKD

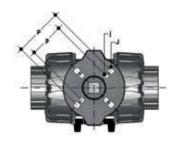
Kit de blocage de la poignée 0° - 90° cadenassable

d	DN	Code
16 - 20	15	SHKD020
25 - 32	20 - 25	SHKD032
40 - 50	32 - 40	SHKD050
63	50	SHKD063

LTKD

Le limiteur de manœuvre LTKD a la fonction spécifique de permettre la rotation de la poignée et du boisseau sphérique uniquement pour les angles d'ouverture et de fermeture prédéterminés. La version LTKD090 permet d'effectuer des manœuvres pour angles de 90°, tandis que la version LTKD180 est prévue pour les angles de 180°. Le limiteur de manœuvre LTKD est constitué d'une platine amovible réalisée en technopolymère. Percé suivant ISO 5211 et spécifiquement conçu pour être logé directement sur la platine de fixation du corps du robinet. Sa fixation sur le corps du robinet se fait au moyen de vis auto taraudeuses ou de rivets plastiques

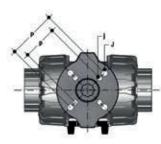
d	DN	Code 90°	Code 180°
16 - 20	15	LTKD090020	LTKD180020
25 - 32	20 - 25	LTKD090032	LTKD180032
40 - 50	32 - 40	LTKD090050	LTKD180050
63	50	LTKD090063	LTKD180063



PSKD

Extension de manœuvre

d	DN	А	A ₁	A ₂	E	В	B ₁	B min	Code
20	15	32	25	32	54	70	29	139,5	PSKD020
25	20	32	25	40	65	89	34,5	164,5	PSKD025
32	25	32	25	40	73	93,5	39	169	PSKD032
40	32	40	32	50	86	110	46	200	PSKD040
50	40	40	32	50	98	116	52	206	PSKD050
63	50	40	32	59	122	122	62	225	PSKD063



POWER QUICK CP Le robinet peut être muni d'actionneurs pneumatiques, au moyen d'un module en PP-GR reproduisant le gabarit de perçage prévu par la norme ISO 5211.

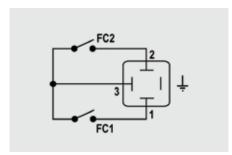
d	DN	B ₂	Q	Т	рхј	РхJ	Code
20	15	58	11	12	F03 x 5,5	F04 x 5,5	PQCP020
25	20	69	11	12	*F03 x 5,5	F05 x 6,5	PQCP025
32	25	74	11	12	*F03 x 5,5	F05 x 6,5	PQCP032
40	32	91	14	16	F05 x 6,5	F07 x 8,5	PQCP040
50	40	97	14	16	F05 x 6,5	F07 x 8,5	PQCP050
63	50	114	14	16	F05 x 6,5	F07 x 8,5	PQCP063

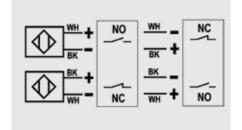
*F04 x 5.5 sur demande

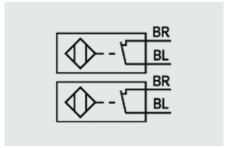
POWER QUICK CE

Le robinet peut être muni d'actionneurs électriques, au moyen d'un module en PP-GR reproduisant le gabarit de perçage prévu par la norme ISO 5211

d	DN	B ₂	Q	Т	рхј	РхЈ	Code
20	15	58	14	16	F03 x 5,5	F04 x 5,5	PQCE020
25	20	69	14	16	*F03 x 5,5	F05 x 6,5	PQCE025
32	25	74	14	16	*F03 x 5,5	F05 x 6,5	PQCE032
40	32	91	14	16	F05 x 6,5	F07 x 8,5	PQCE040
50	40	97	14	16	F05 x 6,5	F07 x 8,5	PQCE050
63	50	114	14	16	F05 x 6,5	F07 x 8,5	PQCE063


*F04 x 5.5 sur demande




MSKD

MSKD est un boîtier de fin de course munie de microcontacts électromécaniques ou inductifs, pour signaler à distance la position du robinet (rotation maximale de 90°). L'installation sur le robinet manuel est possible en utilisant le module de montage Power Quick. Le montage du boîtier peut être effectué sur le robinet TKD même s'il est déjà en service.

d	DN	А	Α1	В	B ₁	С	C ₁	Code électroméca- niques	Code inductifs	Code Namur
20	15	58	85	132,5	29	88,5	134	MSKD1M	MSKD1I	MSKD1N
25	20	70,5	96	143,5	34,5	88,5	134	MSKD1M	MSKD1I	MSKD1N
32	25	74	101	148,5	39	88,5	134	MSKD1M	MSKD1I	MSKD1N
40	32	116	118	165,5	46	88,5	167	MSKD2M	MSKD2I	MSKD2N
50	40	122	124	171,5	52	88,5	167	MSKD2M	MSKD2I	MSKD2N
63	50	139	141	188,5	62	88,5	167	MSKD2M	MSKD2I	MSKD2N

Électromécaniques

Inductifs

Namur WH = blanc; BK = noir; BL = bleu; BR = marron

Type interrupteurs	Débit	Durée [actionnements]	Tension de service	Tension nominale	Courant d'exercice	Tension de coupure		Protection
Électromécaniques	250 V - 5 A	3 x 10 ⁷	-	-	-	-	-	IP65
Inductifs	-	-	5 à 36 V	-	4 à 200 mA	< 4,6 V	< 0,8 mA	IP65
Namur*	-	-	7,5 à 30 V DC**	8,2 V DC	< 30 mA**	-	-	IP65

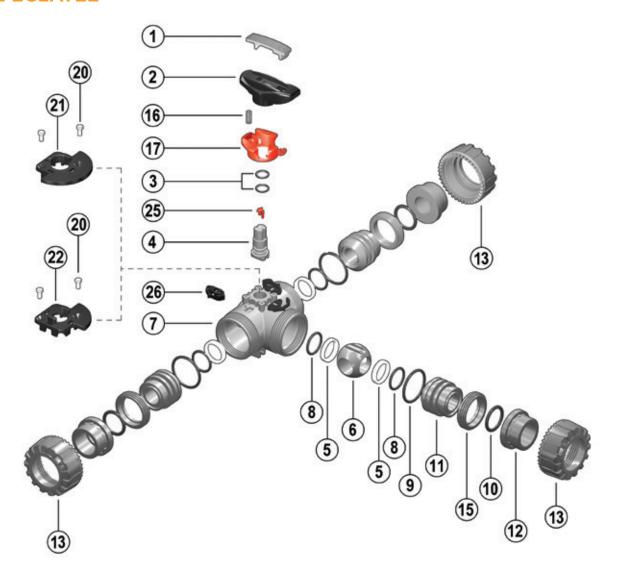
* À utiliser avec un amplificateur ** À l'extérieur des zones à risque d'explosion

COLLIERS ET SUPPORTAGE

Manuelles ou motorisées, tous les vannes doivent, dans de nombreuses applications, être supportées comme il se doit.

Les robinets de la série TKD sont équipés d'un système de fixation intégré qui permet un ancrage direct sur le corps du robinet sans devoir recourir à d'autres composants.

En utilisant des écrous filetés standard (non inclus) en acier inoxydable, il est possible d'ancrer le robinet sur 4 points de fixation.



d	DN	В	Н	L	J*
20	15	31,5	27	20	M4 x 6
25	20	40	30	20	M4 x 6
32	25	40	30	20	M4 x 6
40	32	50	35	20	M6 x 10
50	40	50	35	20	M6 x 10
63	50	60	40	20	M6 x 10

* Avec écrous d'ancrage

COMPOSANTS

VUE ÉCLATÉE

- 1 · Insert de poignée (PVC-U 1)
- 2 · Poignée (HIPVC 1)
- Joint de la tige de manœuvre (EPDM ou FPM - 2)*
- 4 · Tige de manœuvre (PP-H 1)
- 5 · Siège (PTFE 4)*
- 6 · Boisseau sphérique (PP-H 1)
- 7 · Corps (PP-H 1)
- 8 · Joint torique du siège (EPDM-FPM - 4)*

- 9 · Joint d'étanchéité torique radial (EPDM ou FPM 3)
- 10 · Joint d'étanchéité torique du collet (EPDM ou FPM - 3)*
- 11 · Support de siège (PP-H 3)
- 12 · Manchon (PP-H 3)*
- 13 · Écrou union (PP-H 3)
- 15 · Anneau d'arrêt (PVC-U 3)
- 16 · Ressort accessoire SHKD (Acier INOX - 1)**

- 17 · Verrouillage de sécurité pour poignée - accessoire SHKD (PP-GR - 1)**
- 20 · Rivet pour LTKD (POM 2)**
- 21 · LTKD 180° (POM 1)**
- 22 · LTKD 90° (POM 1)**
- 25 · Indicateur de position (POM - 1)
- 26. DUAL BLOCK® (POM 3)

Le matériau du composant et la quantité fournie sont indiqués entre parenthèses

^{*} Pièces de rechange

^{**} Accessoires

DÉMONTAGE

- 1) Isoler le robinet de la ligne (décharger la pression et vider le tuyau)
- Débloquer les écrous union en appuyant sur le levier du DUAL BLOCK® (26) vers le centre du robinet (fig. 1).
 Il est aussi possible de retirer complètement le dispositif de blocage du corps du robinet.
- 3) Dévisser complètement les écrous union (13) et retirer le corps (7).
- 4) Après avoir mis la poignée (2) dans la position avec les trois flèches tournées vers les trois orifices (pour le boisseau sphérique en L avec les deux flèches tournées vers les orifices a et b), ôter l'insert (1) de la poignée (2) et enfiler les deux saillies dans les ouvertures correspondantes sur les anneaux filetés (15), en retirant ainsi les supports (11) solidaires en effectuant une rotation dans le sens anti-horaire.
- 5) Ôter le boisseau sphérique (6) de la bouche centrale en veillant à ne pas abîmer la surface d'étanchéité.
- Retirer des supports (11) les sièges en PTFE (5) et les joints toriques (8, 9, 10).
- 7) Tirer la poignée (2) vers le haut pour l'extraire de la tige de manœuvre (4).
- Appuyer sur la tige de manœuvre (4) vers l'intérieur du corps jusqu'à son retrait.
- Enlever le siège en PTFE (5) avec le joint torique associé (8) de l'intérieur du corps du robinet.
- 10) Enlever les joints (3) de la tige de manœuvre (4) de leur logement.

MONTAGE

- 1) Insérer les joints (3) sur la tige de manœuvre (4).
- 2) Insérer le joint torique (8), puis les sièges en PTFE (5) dans le logement présent à l'intérieur du corps du corps de la vanne.
- Insérer la tige de manœuvre (4) dans le corps, depuis l'intérieur, en veillant à ce que les trois crans situés sur la tête correspondent aux trois sorties.
- 4) Insérer le boisseau sphérique bille (6) par la bouche centrale b en veillant à ce que les trois trous correspondent aux trois sorties (pour le boisseau sphérique en L, les deux trous devront correspondre aux orifices a et b).
- 5) Insérer les joints toriques (8), les sièges en PTFE (5), les joints toriques du collet (10) et les joints d'étanchéité toriques radial (9), dans leur logement situés sur les supports (11).
- 6) Insérer les trois supports (11) avec les anneaux d'arrêt respectifs (15) en les vissant dans le sens horaire avec l'insert prévu à cet effet (1), en commençant par celui de l'orifice central b.
- Appuyer sur la poignée (2) sur la tige de manœuvre (4) en veillant à ce que les flèches qui y sont imprimées soient alignées par rapport aux lignes présentes sur la tige de manœuvre (fig. 2-3).
- 8) Replacer l'insert (1) sur la poignée (2).
- Placer le robinet entre les manchons (12) et serrer les écrous union (13), en veillant à ce que les joints d'étanchéité toriques du collet (10) ne sortent pas de leur logement.

Remarque: pendant les opérations de montage, lubrifier les joints en élastomère. À ce propos, il est rappelé que les huiles minérales, agressives pour le caoutchouc EPDM, sont déconseillées.

Fig. 2

Fig. 3

Fig. 4

INSTALLATION

Avant d'effectuer le montage sur l'installation nous vous prions de suivre les instructions suivantes :

- 1) Vérifier que les tuyaux auxquels le robinet doit être raccordé sont alignés, de manière à éviter les contraintes mécaniques sur les raccordements union du robinet.
- 2) S'assurer que le système de blocage des écrous union DUAL BLOCK® (26) est installé sur le corps du robinet.
- 3) Débloquer les écrous union (13) en appuyant axialement sur le petit levier de déblocage ; ensuite, le dévisser en tournant dans le sens anti-horaire.
- 4) Procéder au dévissage des trois écrous union (13) et à leur enfilement sur les tronçons de tuyau.
- 5) Procéder au collage, au soudage ou au vissage des manchons (12) sur les tronçons de tuvau.
- 6) Placer le corps du robinet entre les manchons et serrer complètement les écrous union (13) à la main dans le sens horaire, sans utiliser de clés ou autres outils susceptibles d'abîmer la surface des écrous union.
- 7) Bloquer les écrous union en replaçant le DUAL BLOCK® dans son logement, en appuyant dessus afin que les deux ergots s'enclenchent dans les écrous union.

8) Si cela est nécessaire, soutenir le tuyau avec des colliers FIP ou bien grâce à l'interface intégrée dans le robinet (voir le paragraphe « Colliers et Supportage »).

Le robinet TKD peut être muni d'un verrouillage de poignée pour interdire la rotation du boisseau sphérique (disponible en tant qu'accessoire). Quand le verrouillage (16, 17) est installé, il faut soulever le levier (17) puis faire tourner la poignée.

Il est également possible d'installer un cadenas sur la poignée pour protéger l'installation contre toute manipulation (fig. 4).

Le réglage des sièges peut être effectué en utilisant l'insert amovible situé sur la poignée (fig. 5-6). Après avoir placé le boisseau sphérique comme il est indiqué sur la figure 7-8, il est possible d'utiliser cet insert en guise d'outil pour effectuer le réglage des sièges en vissant les supports selon la démarche indiquée (fig. 7-8).

Un ajustement plus fin des sièges peut être effectué avec le robinet installé sur le tuyau tout simplement en serrant encore davantage les écrous union.

Ce micro-réglage, possible seulement avec les robinets FIP grâce au système breveté « Seat stop system », permet de rétablir l'étanchéité, lorsque les sièges en PTFE sont usés à cause du grand nombre de manœuvres.

Éviter toujours les manœuvres de fermeture brusques et protéger le robinet contre les manœuvres accidentelles.

Fig. 7

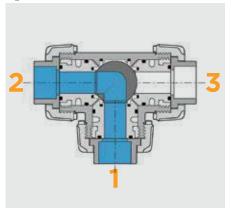
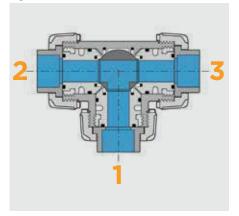



Fig. 8

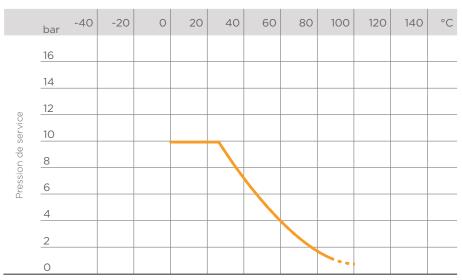
SR DN 15 À 50

PPH

SR **DN 15 À 50**

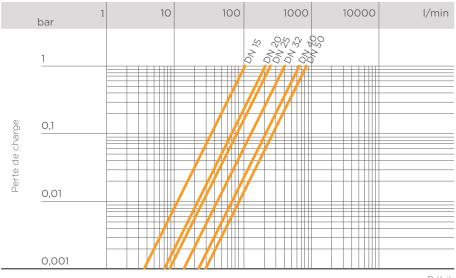
Le clapet de retenue SR sert à laisser passer le fluide dans une seule direction.

CLAPET DE RETENUE À BILLE


- Système d'assemblage par soudage
- Corps de clapet PN10 réalisé par moulage à injection en PP-H et conforme à la Directive Européenne 97/23/CE pour les équipements sous pression PED. Conditions d'essai conformes à ISO 9393.
- Le clapet ne peut être utilisé que pour des fluides ayant un poids spécifique de moins de 1,20 g/cm³.
- Système d'étanchéité avec support antidéfilement
- Bille complètement réalisée en PP chargé de talc
- Possibilité d'effectuer l'entretien avec le corps de clapet installé
- Installation possible aussi bien à la verticale (préférable) qu'à l'horizontale

Spécifications technique	s			
Fabrication	Clapet de retenue à bille			
Gamme de dimensions	DN 15 à 50			
Pression nominale	PN 10 pour de l'eau à 20 °C			
Plage de température	0 °C à 100 °C			
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494			
Références normatives	Critères de fabrication : EN ISO 16137, EN ISO 15494			
	Méthodes et conditions requises pour les tests : ISO 9393			
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318			
Matériaux du clapet	Corps: PP-H Bille: PP			
Matériaux d'étanchéité	FPM (jeu de rechange disponible en EPDM sur demande)			

DONNÉES TECHNIQUES


VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

Température de service

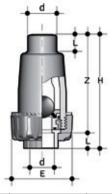
DIAGRAMME DES PERTES DE CHARGE

Débit

PRESSIONS MINIMALES

Pressions minimales pour l'étanchéité du clapet en position horizontale.

DN	15	20	25	32	40	50
bar	0,4	0,4	0,4	0,4	0,4	0,4

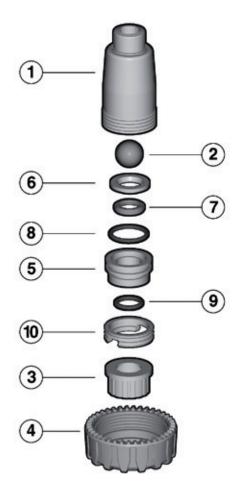

COEFFICIENT DE DÉBIT K_v100

Par coefficient de débit K_v100, on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge Δp= 1 bar pour une position déterminée du clapet. Le tableau indique les valeurs K_v100 pour un clapet complètement ouvert.

DN	15	20	25	32	40	50
K _v 100 l/min	110	205	240	410	650	840

Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.

DIMENSIONS


SRIM

Clapet de retenue à bille avec embouts pour soudage dans l'emboîture, série métrique

d	DN	PN	Е	Н	L	Z	g	Code
20	15	10	55	105	16	89	75	SRIM020F
25	20	10	66	126	19	107	140	SRIM025F
32	25	10	74	148	22	126	215	SRIM032F
40	32	10	86	172	26	146	320	SRIM040F
50	40	10	99	189	31	158	440	SRIM050F
63	50	10	120	224	38	186	750	SRIM063F

COMPOSANTS

VUE ÉCLATÉE

- 1 · Corps (PP-H 1)
- 2 · Bille (PP-H chargé de talc 1)*
- **3** · Manchon (PP-H 1)*
- 4 · Écrou union (PP-H 1)*
- 5 · Support (PP-H 1)
- 6 · Anneau presse-joint (PP-H - 1)
- 7 · Siège (EPDM ou FPM 1)*
- 8 · Joint d'étanchéité torique radial (EPDM ou FPM 1)*
- 9 · Joint d'étanchéité torique du collet (EPDM ou FPM 1)*

^{*} Pièces de rechange

DÉMONTAGE

- 1) Isoler le clapet du flux.
- 2) Dévisser l'écrou union (4).
- Dévisser le support (5) au moyen de l'insert de poignée du clapet VKD contenu dans l'emballage; ôter l'anneau presse-joint (6) pour accéder au siège (7).
- 4) Dégager la bille (2) de l'intérieur du corps (1).

MONTAGE

- 1) Insérer la bille (2) dans le corps (1).
- 2) Placer les joints toriques (9) e (8) dans les logements respectifs du support (5).
- 3) Positionner le siège (7) entre le support (5) et l'anneau presse-joint (6).
- Visser à fond le support (5) dans le corps (1) au moyen de l'insert de poignée du clapet VKD contenu dans l'emballage.
- 5) Insérer le collier (3) et serrer l'écrou union (4), en veillant à ce que le joint torique d'étanchéité du collet (9) ne sorte pas de son logement.

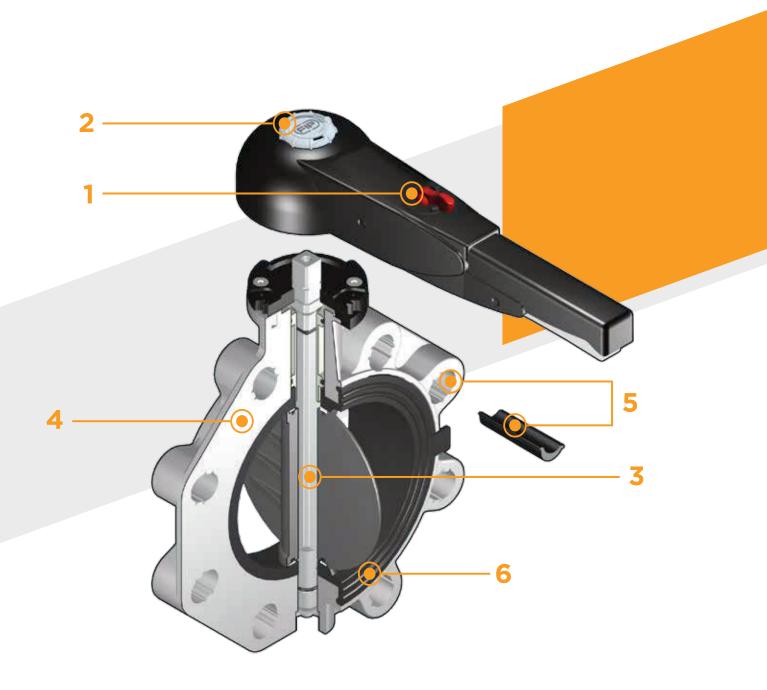
Remarque: les opérations d'entretien peuvent être effectuées avec le corps de clapet installé. Pendant les opérations de montage, il est conseillé de lubrifier les joints en élastomère. À ce propos, il est rappelé que les huiles minérales ne sont pas appropriées, car elles sont agressives pour le caoutchouc EPDM.

INSTALLATION

- Le clapet de retenue SR peut être installé sur des tuyaux verticaux ou horizontaux.
- 2) Orienter le clapet de sorte que la flèche présente sur le corps indique la direction du fluide.

FK DN 40 À 400

PPH


FK **DN 40 À 400**

La FK est une vanne à papillon d'arrêt et de régulation aux caractéristiques structurelles idéales pour les applications industrielles qui réclament de hautes performances et une grande fiabilité dans le temps. Cette vanne est également munie du système de personnalisation Labelling System.

VANNE À PAPILLON

- Disque en PP-H à arbre traversant, interchangeable en différents matériaux thermoplastiques: PVC-U, PVC-C, ABS, PVDF
- Dimensions de la vanne conforme à la norme ISO 5752 (DN 40 à 200 Medium serie25, DN 250 à 300 Long Serie16), DIN 3202 K2 et ISO 5752 (DN DN 65 à 200 K2, DN 250 à 300 K3).
- Possibilité d'installation même en bout de ligne et comme vanne de purge de fond ou de purge rapide de réservoir.
- Version spéciale annulaire Lug PN 10 à perçage complet DIN 2501 ou ANSI B16.5 cl.150 avec écrous d'ancrage en acier inoxydable AISI 316 noyés à chaud
- Compatibilité du matériau de la vanne (PP-H) avec le transport d'eau, eau potable et autres substances alimentaires selon les réglementations en vigueur
- Possibilité d'installer un réducteur manuel ou des actionneurs pneumatiques et/ou électriques grâce au montage de petites brides en PP-GR à perçage standard ISO. Vanne DN 40÷200 dotée d'un disque à crémaillère en PP-GR Pour les versions motorisées, platine percée conforme à ISO 5211 F05, F07, F10. Vanne DN 250 à 300 munie d'une colonnette monobloc en PP-GR à haute résistance mécanique, avec bride de montage pour organes de manœuvre, percée selon la norme ISO 5211 F10 (sauf DN 350 à 400), F12, F14.

	N N N N N N N N N N N N N N N N N N N
Fabrication	Vanne à papillon centrique bidirectionnelle
Gamme de dimensions	DN 40 à 400
Pression nominale	Version wafer DN 40 à 250: PN 10 pour de l'eau à 20 °C DN 300: PN 8 pour de l'eau à 20 °C DN 350: PN 7 pour de l'eau à 20 °C DN 400: PN 6 pour de l'eau à 20 °C Version Lug DN 65 à 200: PN 10 pour de l'eau à 20 °C DN 250 à 300: PN 6 pour de l'eau à 20 °C
Plage de température	0 °C à 100 °C
Standard d'accouplement	Bridage : EN ISO 15494, DIN 2501, ISO 7005-1, EN 1092-1, ASTM B16.5 cl.150, JIS B 2220
Références normatives	Critères de fabrication : EN ISO 16136, EN ISO 15494
	Méthodes et conditions requises pour les tests : ISO 9393
	Interfaces pour actionneurs : ISO 5211
Matériaux de la vanne	Corps: PP-GR Papillon: PP-H Tige: Acier AISI 316.
Matériaux d'étanchéité	Manchette : EPDM, FPM. NBR sur demande
Options de commande	Commande manuelle (DN 40÷200), réducteur avec volant, actionneur pneumatique, actionneur électrique

- Poignée ergonomique en HIPVC munie d'un dispositif de blocage, déblocage, manœuvre rapide et graduée pour un réglage sur 10 positions intermédiaires (DN 40 à 200). La plage de fonctionnement, à partir des premiers degrés d'ouverture de la vanne, garantit également des valeurs de perte de charge extrêmement basses.
- 2 Système de personnalisation Labelling System: module intégré dans la poignée et composé d'un bouchon de protection transparent et d'une plaquette porteétiquette personnalisable avec le set LSE (disponible

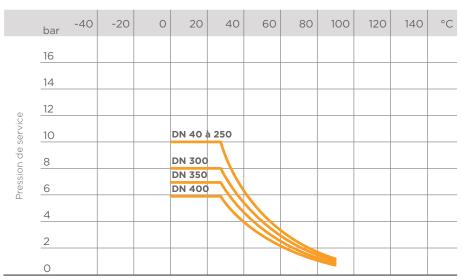
en tant qu'accessorio). La personnalisation possible permet d'identifier la vanne sur l'installation en fonction des exigences spécifiques

Tige en acier INOX complètement isolée du fluide, à section carrée selon ISO 5211:

DN 40 à 65 : 11 mm DN 80 à 100 : 14 mm DN 125 à 150 : 17 mm DN 200 : 22 mm DN 250 à 400 : 27 mm

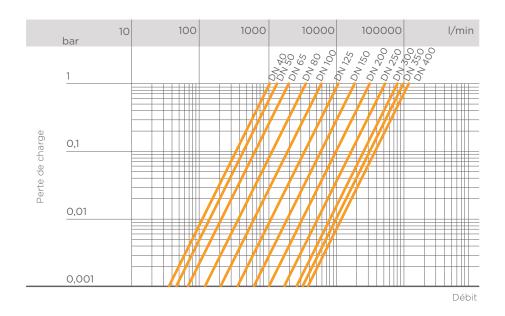
4 Corps en matériau composite à base de polypropylène renforcé avec des fibres de verre (PP-GR) résistant aux rayons UV et se caractérisant par une grande

résistance mécanique.


- Système de perçage avec trous oblongs qui permet l'accouplement avec des brides selon de nombreux standards internationaux. Les inserts d'autocentrage en ABS fournies pour les DN 40÷200 assurent le bon alignement axial de la vanne pendant l'installation.

 Pour les DN 250 à 400, le perçage par autocentrage est de type traditionnel et conforme aux normes DIN et ANSI.
- 6 Manchette interchangeable avec double fonction d'étanchéité en ligne et d'isolement du corps du fluide

DONNÉES TECHNIQUES


VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

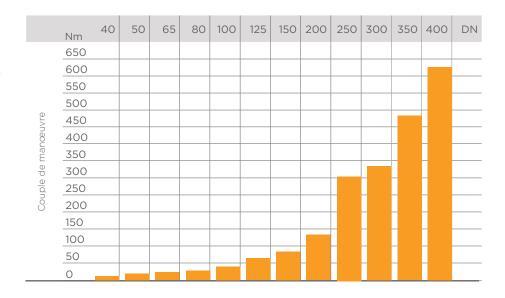
Température de service

DIAGRAMME DES PERTES DE CHARGE

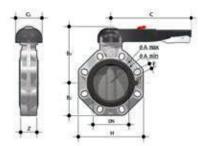
COEFFICIENT DE DÉBIT K_v100

Par coefficient de débit K_v100 , on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge $\Delta p = 1$ bar pour une position déterminée de la vanne.

Le tableau indique les valeurs K_v100 pour une vanne complètement ouverte.

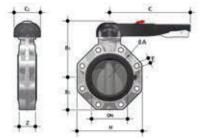

DN	40	50	65	80	100	125	150	200	250	300	350	400
K 100 I/min	1000	1205	1700	7550	5000	0050	10700	70500	57200	91600	94100	124900

COURBE DE DÉBIT EN FONCTION DE L'OUVERTURE


Angle d'ouverture du papillon

COUPLE DE MANŒUVRE À LA PRESSION MAXIMALE DE SERVICE

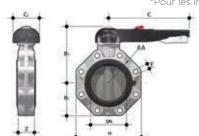
Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.


DIMENSIONS

FKOM/LM Vanne à papillon à commande manuelle

d - Taille	DN	PN	A min	A max	B ₂	B ₃	С	C ₁	Н	U	Z	g	Code EPDM	Code FPM
50 - 1" 1/2	40	10	99	109	60	137	175	100	132	4	33	800	FKOMLM050E	FKOMLM050F
63 - 2"	50	10	115	125,5	70	143	175	100	147	4	43	980	FKOMLM063E	FKOMLM063F
75 - 2" 1/2	65	10	128	144	80	164	175	110	165	4	46	1370	FKOMLM075E	FKOMLM075F
90 - 3"	80	10	145	160	93	178	175	100	185	8	49	1770	FKOMLM090E	FKOMLM090F
110 - 4"	100	10	165	190	107	192	272	110	211	8	56	2120	FKOMLM110E	FKOMLM110F
140 - 5"	125	10	204	215	120	212	330	110	240	8	64	3000	FKOMLM140E	FKOMLM140F
160 - 6"	150	10	230	242	134	225	330	110	268	8	70	3750	FKOMLM160E	FKOMLM160F
200*/225 - 8"	200	10	280	298	161	272	420	122	323	8	71	6650	FKOMLM225E	FKOMLM225F

Remarque : de d75 à 225, il existe des joints primaires en NBR *Pour les installations sur tuyaux en PP-H SDR11 et 17,6, il existe des collets spéciaux émoussés QBM de d160 à d315



FKOM/LM LUG ISO-DINVanne à papillon à commande manuelle, version Lug ISO-DIN

d	DN	PN	øΑ	B ₂	B ₃	С	C ₁	f	Н	U	Z	g	Code EPDM	Code FPM
75	65	10	145	80	164	175	110	M16	165	4	46	1770	FKOLMLM075E	FKOLMLM075F
90	80	10	160	93	178	175	100	M16	185	8	49	2570	FKOLMLM090E	FKOLMLM090F
110	100	10	180	107	192	272	110	M16	211	8	56	2920	FKOLMLM110E	FKOLMLM110F
140	125	10	210	120	212	330	110	M16	240	8	64	4600	FKOLMLM140E	FKOLMLM140F
160	150	10	240	134	225	330	110	M20	268	8	70	5350	FKOLMLM160E	FKOLMLM160F
200*/225	200	10	295	161	272	420	122	M20	323	8	71	8250	FKOLMLM225E	FKOLMLM225F

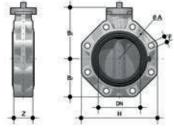
Remarque : de d75 à 225, il existe des joints primaires en NBR


*Pour les installations sur tuyaux en PP-H SDR11 et 17,6, il existe des collets spéciaux émoussés QBM de d160 à d315

FKOM/LM LUG ANSIVanne à papillon à commande manuelle, version Lug ANSI

d	DN	PN	øΑ	B ₁	B ₂	С	C ₁	f	Н	U	Z	g	Code EPDM	Code FPM
2" 1/2	65	10	140	119	80	175	110	5/8"	165	4	46	1770	FKOALMLM212E	FKOALMLM212F
3"	80	10	152	133	93	175	100	5/8"	185	8	49	2570	FKOALMLM300E	FKOALMLM300F
4"	100	10	191	147	107	272	110	5/8"	211	8	56	2920	FKOALMLM400E	FKOALMLM400F
5"	125	10	216	167	120	330	110	3/4"	240	8	64	4600	FKOALMLM500E	FKOALMLM500F
6"	150	10	241	180	134	330	110	3/4"	268	8	70	5350	FKOALMLM600E	FKOALMLM600F
8"	200	10	298	227	161	420	122	3/4"	323	8	71	8250	FKOALMLM800E	FKOALMLM800F

Remarque : de d 2.1/2" à 8", il existe des joints primaires en NBR.

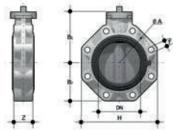

FKOM/FM

Vanne à papillon à tige nue

d - Ta	aille	DN	PN	A min	A max	øΑ	B ₁	B ₂	f	Н	U	Z	g	Code EPDM	Code FPM
50 - 1"	1/2	40	10	99	109	-	106	60	19	132	4	33	474	FKOMFM050E	FKOMFM050F
63	- 2"	50	10	115	126	-	112	70	19	147	4	43	654	FKOMFM063E	FKOMFM063F
75 - 2"	1/2	65	10	128	144	-	119	80	19	165	4	46	900	FKOMFM075E	FKOMFM075F
90	- 3"	80	10	145	160	-	133	93	19	185	8	49	1300	FKOMFM090E	FKOMFM090F
110	4"	100	10	165	190	-	147	107	19	211	8	56	1650	FKOMFM110E	FKOMFM110F
140	- 5"	125	10	204	215	-	167	120	23	240	8	64	2450	FKOMFM140E	FKOMFM140F
160	- 6"	150	10	230	242	-	180	134	23	268	8	70	3200	FKOMFM160E	FKOMFM160F
200*/225	- 8"	200	10	280	298	-	227	161	23	323	8	71	5900	FKOMFM225E	FKOMFM225F
2	250 3	**250	10	-	-	350	248	210	22	405	12	114	11800	FKOMFM280E	FKOMFM280F
2	280 3	**250	10	-	-	350	248	210	22	405	12	114	11800	FKOMFM280E	FKOMFM280F
	315 **	**300	8	-	-	400	305	245	22	475	12	114	18700	FKOMFM315E	FKOMFM315F
***	355	350	7	-	-	460	330	280	22	530	16	129	23315	FKOMFM355E	FKOMFM355F
***∠	100	400	6	-	-	515	350	306	26	594	16	169	30310	FKOMFM400E	FKOMFM400F
	10" **	**250	10	-	-	362	248	210	25,4	405	12	114	11800	FKOAMFM810E	FKOAMFM810F
	12" **	**300	8	-	-	400	305	245	25,4	475	12	114	18700	FKOAMFM812E	FKOAMFM812F
***	14"	350	7	-	-	476	330	280	28,5	530	12	129	23315	FKOAMFM814E	FKOAMFM814F
***	16"	400	6	-	-	540	350	306	28,5	594	16	169	30310	FKOAMFM816E	FKOAMFM816F

Remarque : de d75 à 225, il existe des joints primaires en NBR

*Pour les installations sur tuyaux en PP-H SDR11 et 17,6, il existe des collets spéciaux émoussés QBM de d160 à d315 **ISO-DIN ***ANSI B.16.5 150



FKOM/FM LUG ISO-DIN

Vanne à papillon à tige nue, version Lug ISO-DIN

d	DN	PN	øA	B ₁	B ₂	f	Н	U	Z	g	Code EPDM	Code FPM
75	65	10	145	119	80	M16	165	4	46	1300	FKOLMFM075E	FKOLMFM075F
90	80	10	160	133	93	M16	185	8	49	2100	FKOLMFM090E	FKOLMFM090F
110	100	10	180	147	107	M16	211	8	56	2450	FKOLMFM110E	FKOLMFM110F
140	125	10	210	167	120	M16	240	8	64	4050	FKOLMFM140E	FKOLMFM140F
160	150	10	240	180	134	M20	268	8	70	4800	FKOLMFM160E	FKOLMFM160F
200*/225	200	10	295	227	161	M20	323	8	71	7500	FKOLMFM225E	FKOLMFM225F

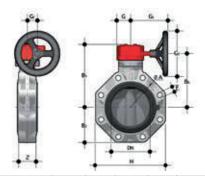
Remarque : De d75 à 225, il existe des joints primaires en NBR* Pour les installations sur tuyaux en PP-H SDR11 et 17,6, il existe des collets spéciaux émoussés QBM de d160 à d315

FKOM/FM LUG ANSI

Vanne à papillon à tige nue, version Lug ANSI

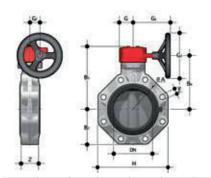
d	DN	PN	øΑ	B ₁	B ₂	f	Н	U	Z	g	Code EPDM	Code FPM
2" 1/2	65	10	140	119	80	5/8"	165	4	46	1300	FKOALMFM212E	FKOALMFM212F
3"	80	10	152	133	93	5/8"	185	8	49	2100	FKOALMFM300E	FKOALMFM300F
4"	100	10	191	147	107	5/8"	211	8	56	2450	FKOALMFM400E	FKOALMFM400F
5"	125	10	216	167	120	3/4"	240	8	64	4050	FKOALMFM500E	FKOALMFM500F
6"	150	10	241	180	134	3/4"	268	8	70	4800	FKOALMFM600E	FKOALMFM600F
8"	200	10	298	227	161	3/4"	323	8	71	7500	FKOALMFM800E	FKOALMFM800F
10"	250	6	362	248	210	7/8"	405	12	114	16600	FKOALMFM810E	FKOALMFM810F
12"	300	6	432	305	245	7/8"	475	12	114	23500	FKOALMFM812E	FKOALMFM812F

Remarque : de d 2" 1/2 à 8", il existe des joints primaires en NBR.



FKOM/RM Vanne à papillon avec réducteur à volant

d - Taille	DN	PN	A min	A max	øΑ	B ₂	B ₅	B ₆	G	G ₁	G ₂	G_3	Н	U	Z	g	Code EPDM	Code FPM
75 - 2" 1/2	65	10	128	144	-	80	174	146	48	135	39	125	165	4	46	2300	FKOMRM075E	FKOMRM075F
90 - 3"	80	10	145	160	-	93	188	160	48	135	39	125	185	8	49	2700	FKOMRM090E	FKOMRM090F
110 - 4"	100	10	165	190	-	107	202	174	48	135	39	125	211	8	56	3050	FKOMRM110E	FKOMRM110F
140 - 5"	125	10	204	215	-	120	222	194	48	144	39	200	240	8	64	4350	FKOMRM140E	FKOMRM140F
160 - 6"	150	10	230	242	-	134	235	207	48	144	39	200	268	8	70	5100	FKOMRM160E	FKOMRM160F
200/225 - 8"	200	10	280	298	-	161	287	256	65	204	60	200	323	8	71	9200	FKOMRM225E	FKOMRM225F
250-280	**250	10	-	-	350	210	317	281	88	236	76	250	405	12	114	18400	FKOMRM280E	FKOMRM280F
315	**300	10	-	-	350	210	317	281	88	236	76	250	405	12	114	18400	FKOMRM315E	FKOMRM315F
***355	350	7	-	-	460	280	438	390	88	361	80	300	530	16	129	31765	FKOMRM355E	FKOMRM355F
***400	400	6	-	-	515	306	438	390	88	361	80	300	594	16	169	38760	FKOMRM400E	FKOMRM400F
10"	***250	10	-	-	400	245	374	338	88	236	76	250	475	12	114	25450	FKOAMRM810E	FKOAMRM810F
12"	***300	8	-	-	350	210	317	281	88	236	76	250	405	12	114	18400	FKOAMRM812E	FKOAMRM812 F
****14"	350	7	-	-	476	280	438	390	88	361	80	300	530	12	129	31765	FKOAMRM814E	FKOAMRM814F
****16"	400	6	-	-	540	306	438	390	88	361	80	300	594	16	169	38760	FKOAMRM816E	FKOAMRM816E

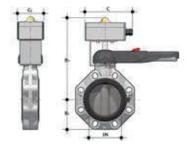

Remarque: De d75 à 225, il existe des joints primaires en NBR* Pour les installations sur tuyaux en PP-H SDR11 et 17,6, il existe des collets spéciaux émoussés QBM de d160 à d315 **ISO-DIN

***ANSI B.16.5 150

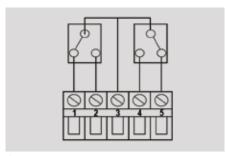
FKOM/RM LUG ISO-DINVanne à papillon à commande manuelle avec réducteur à volant, version Lug ISO-DIN

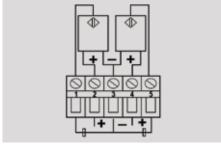
d	DN	PN	øA	B ₂	B ₅	B ₆	f	G	G ₁	G_2	G ₃	Н	U	Z	g	Code EPDM	Code FPM
75	65	10	145	80	174	146	M16	48	135	39	125	165	4	46	2700	FKOLMRM075E	FKOLMRM075F
90	80	10	160	93	188	160	M16	48	135	39	125	185	8	49	3500	FKOLMRM090E	FKOLMRM090F
110	100	10	180	107	202	174	M16	48	135	39	125	211	8	56	3850	FKOLMRM110E	FKOLMRM110F
140	125	10	210	120	222	194	M16	48	144	39	200	240	8	64	5950	FKOLMRM140E	FKOLMRM140F
160	150	10	240	134	235	207	M20	48	144	39	200	268	8	70	6700	FKOLMRM160E	FKOLMRM160F
200*/225	200	10	295	161	256	256	M20	65	204	60	200	323	8	71	10800	FKOLMRM225E	FKOLMRM225F
				*Pc	our les i	nstallat	ions su	r tuya	aux en F	PP-H SE	DR11 et						s primaires en NBR BM de d160 à d315

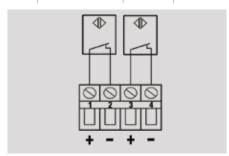
FKOM/RM LUG ANSIVanne à papillon avec réducteur à volant, version Lug ANSI


d	DN	PN	B ₂	B ₅	B ₆	Н	Z	øΑ	f	G	G ₁	G_2	G ₃	U	g	Code EPDM	Code FPM
2" 1/2	65	10	80	174	146	165	46	140	5/8"	48	135	39	125	4	2700	FKOALMRM212E	FKOALMRM212F
3"	80	10	93	188	160	185	49	152	5/8"	48	135	39	125	8	3500	FKOALMRM300E	FKOALMRM300F
4"	100	10	107	202	174	211	56	191	5/8"	48	135	39	125	8	3850	FKOALMRM400E	FKOALMRM400F
5"	125	10	120	222	194	240	64	216	3/4"	48	144	39	200	8	5950	FKOALMRM500E	FKOALMRM500F
6"	150	10	134	235	207	268	70	241	3/4"	48	144	39	200	8	6700	FKOALMRM600E	FKOALMRM600F
8"	200	10	161	287	256	323	71	298	3/4"	65	204	60	200	8	10800	FKOALMRM800E	FKOALMRM800F
10"	250	6	210	317	281	405	114	362	7/8"	88	236	76	250	12	23200	FKOALMRM810E	FKOALMRM810F
12"	300	6	245	374	338	475	114	432	7/8"	88	236	76	250	12	30250	FKOALMRM812E	FKOALMRM812F

Remarque : de d 2.1/2" à 8", il existe des joints primaires en NBR, voir catalogue IR.


ACCESSOIRES

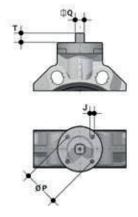

FK MS


Le kit MS permet de munir la vanne manuelle FK/LM d'un boîtier de fin de course avec des microcontacts électromécaniques ou inductifs, pour signaler à distance la position de la vanne (ouverte-fermée). Le montage du kit peut être effectué sur la vanne même s'il est déjà installé sur le système

DN	B ₂	B ₃	C ₁	Protection	Code électroméca-	Code	Code Namur
					niques		
40	60	248	80	IP67	FKMSOM	FKMS0I	FKMSON
50	70	254	80	IP67	FKMSOM	FKMS0I	FKMSON
65	80	261	80	IP67	FKMSOM	FKMSOI	FKMSON
80	93	275	80	IP67	FKMS1M	FKMS1I	FKMS1N
100	107	289	80	IP67	FKMS1M	FKMS1I	FKMS1N
125	120	309	80	IP67	FKMS1M	FKMS1I	FKMS1N
150	134	322	80	IP67	FKMS1M	FKMS1I	FKMS1N
200	161	369	80	IP67	FKMS2M	FKMS2I	FKMS2N

Électromécaniques

Inductifs


Namur

LSE

Set de personnalisation et d'impression des étiquettes pour poignée Easyfit, composé de feuilles d'adhésifs prédécoupés et du logiciel pour la création pas à pas des étiquettes

Code	DN
LSE040	40
LSE040	50
LSE040	65
LSE040	80
LSE040	100
LSE040	125
LSE040	150
LSE040	200

BRIDE POUR LE MONTAGE DES ACTIONNEURS

La vanne peut être équipée d'actionneurs pneumatiques et/ou électriques standard et de réducteurs à volant pour les opérations difficiles, au moyen d'une petite platine en PP-GR reproduisant le gabarit de perçage prévu par la norme ISO 5211.

DN	J	Р	Ø	Т	Q
40	7	50	F 05	12	11
50	7	50	F 05	12	11
65	7/9	50/70	F 05/F 07	12	11
80	9	70	F 07	16	14
100	9	70	F 07	16	14
125	9	70	F 07	19	17
150	9	70	F 07	19	17
200	11	102	F 10	24	22
200	11	102	F 10	24	22
250	11/13/17	102/125/140	F 10/F 12/F 14	29	27
300	11/13/17	102/125/140	F 10/F 12/F 14	29	27
350	14/18	125/140	F 12/F 14	29	27
400	14/18	125/140	F 12/F 14	29	27

PERSONNALISATION

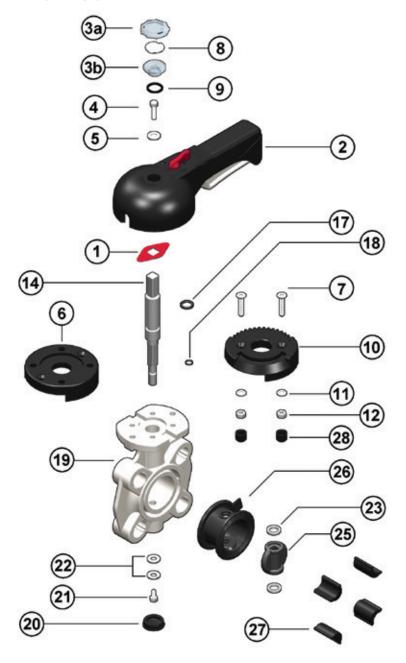
La vanne FK est munie du système d'étiquetage Labelling System.

Ce système permet de réaliser soi-même des étiquettes spéciales à insérer dans la poignée. Il est ainsi extrêmement simple d'appliquer sur les vannes des marques d'entreprise, des numéros de série d'identification ou des indications de service comme, par exemple, la fonction de la vanne au sein de l'installation, le fluide transporté, ainsi que des informations spécifiques pour le service à la clientèle, comme le nom du client ou la date et le lieu où l'installation a été effectuée.

Le module LCE est fourni en série et se constitue d'un bouchon en PVC rigide transparent résistant à l'eau (A-C) et d'une plaquette porte-étiquette blanche (B) de la même matière, marquée FIP sur une face (fig. 1).

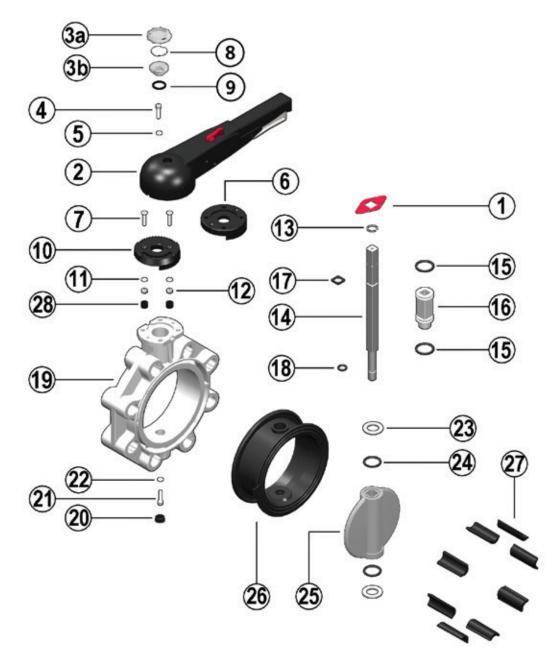
La plaquette porte-étiquette, insérée à l'intérieur du bouchon, peut être ôtée et, une fois renversée, utilisée pour être personnalisée grâce à l'application d'étiquettes imprimées avec le logiciel fourni avec le kit LSE.

Pour appliquer l'étiquette sur la vanne suivre la démarche indiquée ci-dessous :


- Retirer la partie supérieure du bouchon transparent (A) en le tournant dans le sens anti-horaire, comme l'indique le mot « Open » présent sur le bouchon et l'enlever.
- Ôter la plaquette porte-étiquette de son logement dans la partie inférieure du bouchon (C)
- 3) Appliquer l'étiquette adhésive sur la plaquette (B) de façon à aligner les profils en respectant la position de la languette.
- 4) Réinsérer la plaquette dans son logement sur la partie inférieure du bouchon
- 5) Remettre la partie supérieure du bouchon sur son logement en le tournant dans le sens anti-horaire ; de cette manière, l'étiquette est protégée contre les agents atmosphériques.

COMPOSANTS

VUE ÉCLATÉE DN 40 À 50

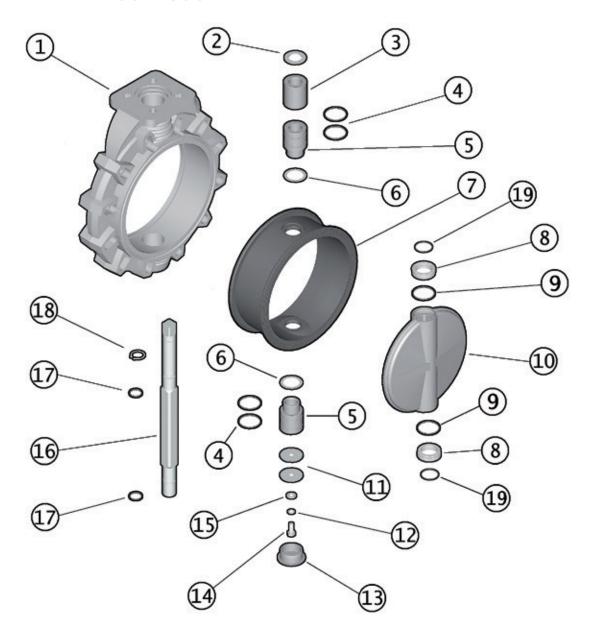


- 1. Indicateur de position (PA 1)
- 2 · Poignée (HIPVC 1)
- 3a/b · Bouchon de protection transparent (PVC - 1)
- 4 · Vis de fixation (Acier INOX - 1)
- 5 · Rondelle (Acier INOX 1)
- 6 · Bride(PP-GR 1)
- 7 · Vis (Acier INOX 2)
- 8 · Plaquette porte-étiquettes (PVC - 1)
- 9 · Joint torique (NBR 1)

- **10** · Disque (PP-GR 1)
- 11 · Rondelle (Acier INOX 2)
- 12 · Écrou (Acier INOX 2)
- 13 · Anneau d'arrêt (Acier INOX 1)
- 14 · Tige (Acier AISI 316 1)
- 15 · Joint torique douille (EPDM ou FPM - 2)
- 16 · Douille (Nylon 1)
- 17 · Joint torique tige (EPDM ou FPM - 1)
- 18 · Joint torique tige (EPDM ou FPM - 1)

- **19** · Corps (PP-GR 1)
- 20 · Bouchon de protection (PE - 1)
- 21 · Vis (Acier INOX 1)
- 22 · Rondelle (Acier INOX 1)
- 23 · Palier antifrottement (PTFE - 2)
- 24 · Joint torique disque (EPDM ou FPM - 2)
- 25 · Disque (PP-H- 1)
- 26 · Manchette (EPDM ou FPM 1)
- 27 · Inserts (ABS 4-8)
- 28 · Capuchon (PE 2)

VUE ÉCLATÉE DN 65 À 200



- 1 · Indicateur de position (PA 1)
- 2 · Poignée (HIPVC 1)
- **3a/b** · Bouchon de protection transparent (PVC 1)
- 4 · Vis de fixation (Acier INOX 1)
- 5 · Rondelle (Acier INOX 1)
- 6 · Bride(PP-GR 1)
- 7 · Vis (Acier INOX 2)
- 8 · Plaquette porte-étiquettes (PVC - 1)
- 9 · Joint torique (NBR 1)

- **10** · Disque (PP-GR 1)
- 11 · Rondelle (Acier INOX 2)
- 12 · Écrou (Acier INOX 2)
- 13 · Anneau d'arrêt (Acier INOX 1)
- 14 · Tige (Acier AISI 316 1)
- 15 · Joint torique douille (EPDM ou FPM - 2)
- 16 · Douille (Nylon 1)
- 17 · Joint torique tige (EPDM ou FPM - 1)
- 18 · Joint torique tige (EPDM ou FPM - 1)

- **19** · Corps (PP-GR 1)
- 20 · Bouchon de protection (PE 1)
- 21 · Vis (Acier INOX 1)
- 22 · Rondelle (Acier INOX 1)
- 23 · Palier antifrottement (PTFE 2)
- 24 · Joint torique disque (EPDM ou FPM - 2)
- 25 · Disque (PP-H- 1)
- 26 · Manchette (EPDM ou FPM - 1)
- 27 · Inserts (ABS 4-8)
- 28 · Capuchon (PE 2)

VUE ÉCLATÉE DN 250 À 300

- 1 · Corps (PP-GR 1)
- 2 · Rondelle (Acier INOX 1)
- 3 · Douille (PP 1)
- 4 · Joint torique douille (EPDM o FPM - 4)
- 5 · Douille(PP 2)
- 6 · Rondelle (PTFE 2)
- 7 · Manchette (EPDM ou FPM - 1)

- 8 · Palier antifrottement (PTFE 2)
- 9 · Joint torique disque (EPDM ou FPM - 2)
- **10** · Disque (PP-H- 1)
- 11 · Rondelle (Acier INOX 2)
- 12 · Rondelle (Acier INOX 1)
- 13 · Bouchon de protection (PE - 1)

- 14 · Vis (Acier INOX 1)
- 15 · Rondelle (Acier INOX 1)
- **16** · Tige (Acier AISI 316 1)
- 17 · Joint torique tige (EPDM ou FPM - 2)
- 18 · Anneau d'arrêt (Acier INOX - 1)
- 19 · Joint torique (EPDM ou FPM - 2)

VUE ÉCLATÉE DN 350 À 400

- 1 · Corps (PP-GR 1)
- 2 · Rondelle (Acier INOX 1)
- 3 · Douille (PP-H 1)
- 4 · Joint torique douille (EPDM ou FPM - 6)
- 5 · Douille (PP-H 1)
- 6 · Rondelle (PP-H 2)
- 7 · Manchette(EPDM ou FPM 1)

- 8 · Palier antifrottement (PTFE 2)
- 9 · Joint torique papillon (EPDM ou FPM - 2)
- **10** · Disque (PP-H- 1)
- 11 · Rondelle (Acier INOX 1)
- 12 · Rondelle (Acier INOX 1)
- 13 · Bouchon de protection (PE 1)
- 14 · Vis (Acier INOX 1)
- **16** · Tige (Acier AISI 316 1)
- 17 · Joint torique tige (EPDM ou FPM - 2)
- 18 · Anneau d'arrêt (Acier INOX - 1)
- 20 · Réducteur à volant (Al, Aciert - 1)
- 21 · Goupille élastique (Acier INOX 2)
- 22 · Rondelle (Acier INOX 1)
- 23 · Indicateur de position (PA 1)

DÉMONTAGE

DN 40 à 200

- Retirer le module LCE composé du bouchon en PVC rigide transparent (3a-3b) et de la plaquette porteétiquette blanche (8) et dévisser la vis (2) avec la rondelle (3) (fig. 3).
- 2) Retirer la poignée (2).
- 3) Retirer les vis (7) et le disque (10) du corps (19).
- 4) Enlever le bouchon de protection (20) et la vis (21) avec la rondelle (22).
- 5) Ôter la tige (14) et le papillon (25).
- Retirer les paliers antifrottement (23) et (seulement pour DN 65 à 200) les joints (24).
- 7) Dégager la manchette (26) du corps (19).
- 8) Retirer l'anneau d'arrêt (13) et (seulement pour DN 65 à 200) la douille de guidage (16).
- 9) Retirer (seulement pour DN 65 à 200) les joints (15) et (17, 18).

DN 250 à 300

- 1) Enlever le bouchon de protection (13) et dévisser la vis (14) avec les rondelles (11-15).
- 2) Ôter la tige (16) et le papillon (10).
- Dégager la manchette (7) du corps (1).
- 4) Retirer l'anneau d'arrêt (18) et les douilles de guidage (5-3) avec la rondelle (2).
- 5) Retirer la douille inférieure (5).
- 6) Retirer les joints (4) et (17).

DN 350 à 400

- Retirer l'indicateur de position (23) de la tige (16)
- 2. Retirer le capuchon de protection (13) du corps (1)
- 3. Dévisser la vis (14) et retirer les rondelles (11) et (22)
- 4. Dégager le groupe tige (16) du disque
- Dégager le bloc de la douille inférieure (5) de la partie inférieure du corps (1)
- 6. Retirer le bloc du papillon (10) du corps (1)

MONTAGE

DN 40 à 200

- 1) Enfiler la manchette (26) sur le corps (19).
- Insérer les joints (17) et (18) sur la tige (14).
- 3) Insérer les joints (15) sur la douille guide (16) et la douille sur la tige; bloquer la douille au moyen de l'anneau d'arrêt (13).
- Positionner les joints (24), puis les paliers antifrottement (23) sur le papillon (25) et le papillon à l'intérieur du corps, après avoir lubrifié la manchette (26).
- 5) Insérer la tige traversante (14) à travers le corps (19) et le papillon (25).
- 6) Visser la vis (21) avec la rondelle (22) et insérer le bouchon de protection (20).
- 7) Placer le disque (10) sur le corps (19) et visser le vis (7).
- 8) Positionner la poignée (2) sur la tige (14).
- 9) Visser la vis (4) avec la rondelle (5) et replacer le module LCE composé du bouchon en PVC rigide transparent (3a-3b) et de la plaquette porteétiquette blanche (8).

DN 250 à 300

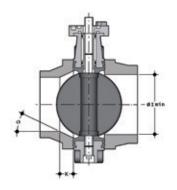
- Enfiler la manchette (7) sur le corps (1).
- 2) Insérer les joints (4) et la rondelle (6) sur les douilles (5).
- 3) Insérer les joints (17) sur la tige (16); insérer la douille supérieure (5), la douille (3), la rondelle (2) sur la tige et les fixer avec l'anneau d'arrêt (18).
- 4) Insérer les joints (19-9) sur les paliers antifrottement (8).
- Positionner les rondelles (8) dans les sièges du papillon (10) et le papillon à l'intérieur du corps (1), après avoir lubrifié la manchette (7).
- 6) Insérer la tige (16) traversante à travers le corps et le papillon.
- Placer la douille inférieure (5) par le bas.
- 8) Visser la vis (14) avec les rondelles (11-15) et mettre le bouchon de protection (13).

DN 350 à 400

- Insérer la douille inférieure (5) munie de joints toriques (4) sur le corps (1), en enfilant successivement la rondelle presse-joint (6) entre la douille et le corps.
- 2. Insérer la deuxième rondelle pressejoint (6) sur la manchette (7) et

- enfiler le tout à l'intérieur du corps (1)
- 3. Insérer le joint torique (9) et l'élément antifriction (8) sur les têtes du papillon (10)
- 4. Lubrifier le papillon (10) et l'insérer à l'intérieur de la manchette (7)
- 5. Insérer la douille supérieure munie de joints toriques O-Ring (3+4) sur la tige (16), avec les joints toriques (17), introduire la rondelle (2) au-dessus de la douille supérieure (3) et enfiler l'anneau d'arrêt (18) dans le logement prévu à cet effet sur la tige (16). Insérer le bloc ainsi formé dans le trou supérieur du corps (1)
- 6. Superposer la rondelle (22) sut la rondelle (11) munie de goupilles élastiques (21) et insérer le bloc ainsi formé sur la partie supérieure de la tige (16), en le vissant avec la vis (14) et la rondelle antidévissage (12)
- 7. Retirer le bouchon de protection (13) sur le corps (1)
- 8. Insérer l'indicateur de position (23) sur la partie supérieure de la tige (16)

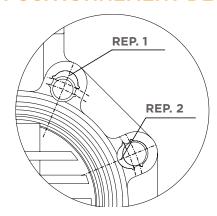
Remarque : pendant les opérations de montage, il est conseillé de lubrifier les ioints en élastomère


. À ce propos, il est rappelé que les huiles minérales, agressives pour le caoutchouc EPDM, sont déconseillées.

INSTALLATION

ASSEMBLAGE

Avant de procéder à l'installation des collets, veiller à ce que le diamètre de passage des collets permette d'ouvrir correctement le papillon de la vanne.


Contrôler également la cote maximale d'appui de la manchette. Avant d'effectuer l'installation de la vanne FK, il convient de s'assurer que le diamètre de passage des collets permet l'ouverture totale du papillon.

DN	I min.
40	25
50	28
65	47
80	64
100	84
125	108
150	134
200	187
250	225
300	280
350	324
400	362

Pour l'installation de collets PP-PE, à embouts courts pour soudure bout à bout ou longs pour électrofusion/bout à bout, vérifier les accouplements vanne-collet-bride et les cotes K - a de chanfreinage si besoin en fonction des différents SDR présentés dans le tableau ci-dessous

	d	DN	50 40	63 50	75 65	90 80	110 100	125 100	140 125	160 150	180 150	200	225 200	250 250	280 250	315 300	355 350	400 400
	50	40																
	63	50																
	75	65																
¥	90	80																
Vanne FK	110	100																
>	140	125																
	160	150																
	225	200																
	280	250																
	315	300																
	355	350																
	400	400																
		17/17,6										k=26,5 a=20°		k=15,7 a=25°		k=13,3 a=25°	k=45 a=25°	k=55 a=25°
		11								k=35 a=20°		k=35 a=25°	k=40 a=15°	k=32,5 a=25°	k=35 a=25°	k=34,5 a=25°	k=55 a=25°	k=80 a=25°
S R		7,4				k=10 a=35°	k=15 a=35°		k=20 a=30°	k=35 a=20°	k=15 a=35°	k=40 a=20°	k=35 a=30°	k=55 a=30°	k=35 a=30°	k=65 a=30°		
		33															k=17 a=30°	k=25 a=35°

POSITIONNEMENT DES INSERTS

Insérer les inserts dans les trous selon la position indiquée dans le tableau, du côté correspondant au sigle avec D et DN pour faciliter l'insertion des tirants et l'accouplement avec les brides (DN 40 à 200). Les inserts d'autocentrage doivent être insérés dans les guides des fentes prévus sur le corps de la vanne, par la face comportant des repères, repères vers le haut, et placées selon le type de perçage des brides, comme il est indiqué dans le tableau suivant :

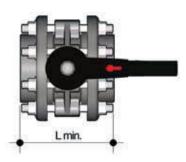
DN	DIN 2501 PN6, EN 1092-1, BS 4504 PN6, DIN 8063 PN6	DIN 2501 PN10/16, EN 1092-1, BS 4504 PN 10/16, DIN 8063 PN 10/16, EN ISO 15493, EN ISO 1452	BS 10 table A-D-E Spec D-E	BS 1560 cl.150, ANSI B16.5 cl.150 *	JIS B 2220 K5	JIS 2211 K10**
DN 40	Rep. 1	Rep. 2	Rep. 1	Rep. 1	Rep. 1	-
DN 50	Rep. 1	Rep. 2	Rep. 1	-	N/A	-
DN 65	Rep. 1	Rep. 2	Rep. 1	Rep. 2	Rep. 1	Rep. 2
DN 80	Rep. 1	Rep. 2	Rep. 1	Rep. 2	Rep. 1	Rep. 1
DN 100	Rep. 1	Rep. 2	Rep. 1	Rep. 2	Rep. 1	Rep. 1
DN 125	Rep. 1	Rep. 2	Rep. 1	Rep. 2	Rep. 1	-
DN 150	Rep. 1	Rep. 2	Rep. 1	Rep. 2	Rep. 1	Rep. 2
DN 200	Rep. 1	PN 10 Rep. 2	Rep. 2	Rep. 2	Rep. 1	N/A

* DN 50 sans insert ** DN 40, 50, 125 sans insert

POSITIONNEMENT DE LA VANNE

Placer la vanne entre deux collets à brides en veillant bien à respecter les cotes d'installation Z. Il est conseillé de toujours installer la vanne à papillon partiellement fermée (le papillon ne doit pas dépasser du corps) et d'éviter le désaxement des brides, qui pourrait provoquer des fuites vers l'extérieur.

Il est conseillé de prendre les précautions suivantes :


- Transport de fluides chargés : positionnement avec la tige de manœuvre inclinée avec un angle de 45° par rapport à l'horizontale.
- Transport des fluides contenant des résidus : positionner la vanne avec la tige de manœuvre à l'horizontale.
- Transport des fluides chargés : positionner la vanne avec la tige de manœuvre à la verticale.

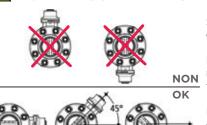
SERRAGE DES TIRANTS

Avant d'effectuer le serrage des tirants, il est conseillé d'ouvrir le papillon, pour ne pas endommager le joint. Serrer de manière homogène les tirants de raccordement en suivant l'ordre numérique indiqué sur la figure (serrage en croix), selon le couple nominal indiqué sur le tableau.

Il n'est pas nécessaire de forcer le serrage des tirants pour obtenir une parfaite étanchéité hydraulique. Un serrage excessif pourrait entraîner une augmentation des couples de manœuvre de la vanne.

DN	L min.	*Nm
40	M16×150	9
50	M16x150	12
65	M16x170	15
80	M16x180	18
100	M16x180	20
125	M16x210	35
150	M20x240	40
200	M20x260	55
250	M20x310	70
300	M20x340	70
350	M20x360	75
400	M24x420	75

*Couple de serrage nominal de la boulonnerie pour assemblages avec des brides libres. Valeurs nécessaires pour obtenir l'étanchéité en essai hydraulique (1,5xPN à 20°C) (boulonnerie nouvelle ou lubrifiée)


BLOCAGE DE LA POIGNÉE

Grâce à la poignée multifonction et au bouton de manœuvre rouge situé sur le levier, il est possible d'effectuer une manœuvre 0°- 90° et une manœuvre graduée au moyen des dix positions intermédiaires et un blocage d'arrêt : la poignée peut être bloquée dans chacune des dix positions tout simplement en agissant sur le bouton de manœuvre Free-Lock. Il est également possible de cadenasser la poignée pour protéger l'installation contre toute manipulation.

La vanne est bidirectionnelle et peut être installée dans n'importe quelle position. Elle peut également être montée en fin de ligne ou en sortie de réservoir.

AVERTISSEMENTS

S'assurer que les vannes installées sur l'installation sont soutenues de façon appropriée en fonction de leur poids.

Éviter toujours les manœuvres de fermeture brusques et protéger la vanne contre les manœuvres accidentelles. À cette fin, il est conseillé de prévoir l'installation de réducteurs de manœuvre qui peuvent être fournis sur demande.

En cas de transport de fluides non propres ou contenant des dépôts, installer la vanne en l'inclinant comme il est indiqué sur la figure ci-contre.

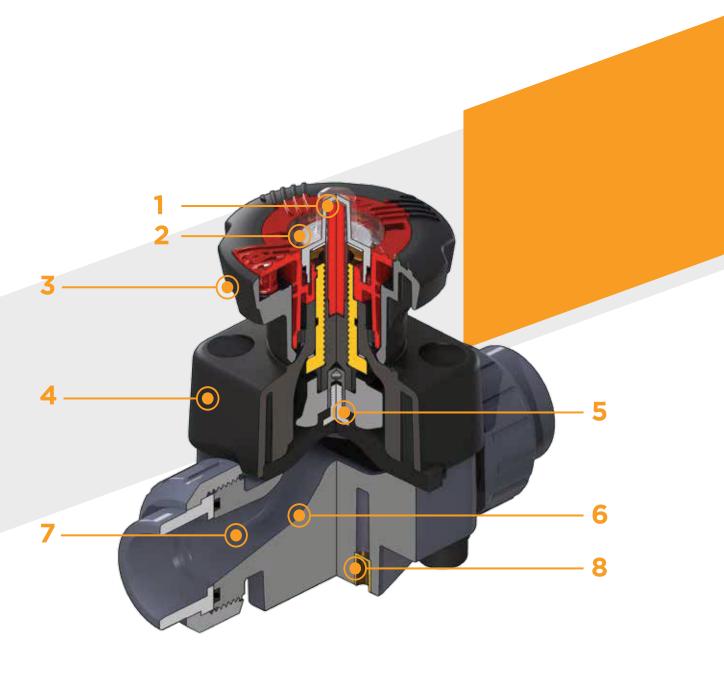
DK DN 15 À 65

Vanne à membrane à 2 voies DIALOCK®

DK **DN 15 À 65**

La nouvelle vanne à membrane DK DIALOCK® est particulièrement indiquée pour la régulation et l'arrêt des fluides abrasifs ou contenant des impuretés. Le nouveau profil du corps optimise l'efficacité hydrodynamique en augmentant sensiblement le débit et elle garantit une excellente linéarité de la courbe de régulation.

La DK présente des dimensions et un poids nettement réduits.


Le nouveau volant est doté d'un mécanisme breveté de blocage instantané et ergonomique, qui permet de verrouiller n'importe quelle position.

VANNE À MEMBRANE À 2 VOIES DIALOCK®

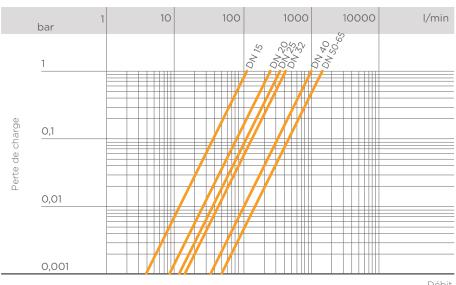
- Système d'assemblage par collage, par vissage et par bridage.
- **Profil hydrodynamique optimisé :** coefficient de débit maximisé grâce à la nouvelle géométrie interne.
- Organes de manœuvre intérieurs en métal isolés du fluide et de l'environnement extérieur
- Modularité de la gamme: seulement 2 volants et 4 tailles de membranes et couvercles pour les 7 dimensions differentes.
- Volant à hauteur fixe quelque soit la position, doté d'un indicateur optique gradué et protégé par un capuchon en PVC transparent avec joint torique d'étanchéité
- Vis de fixation du couvercle en acier INOX protégées de l'environnement extérieur par des bouchons en PE. Absence de parties métalliques exposées à l'environnement extérieur pour éviter tous les risques de corrosion
- Système d'étanchéité CDSA (Circular Diaphragm Sealing Angle) qui, grâce à la distribution uniforme de la pression de l'obturateur sur la membrane d'étanchéité, offre les avantages suivants :
 - diminution du couple de serrage des vis qui fixent le corps de la vanne à l'actionneur.
 - réduction des contraintes mécaniques pour tous les composants de la vanne (actionneur, corps et membrane).
- rinçage automatique de tout le profil intérieur, sans zone de rétention.
- minimisation du risque d'accumulation de dépôts, de contamination ou de détérioration de la membrane à cause de phénomènes de cristallisation.
- réduction du couple de manœuvre.

s
Vanne à membrane avec corps à débit maximisé et volant blocable DIALOCK®
DN 15 à 65
PN 10 pour de l'eau à 20 °C
0 °C à 100 °C
Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494
Vissage : ISO 228-1, DIN 2999
Bridage : ISO 7005-1, EN 1092-1, EN ISO 15494, EN 558-1, DIN 2501, ANSI B16.5 cl.150
Critères de fabrication : EN ISO 16138, EN ISO 15494
Méthodes et conditions requises pour les tests : ISO 9393
Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318
Corps: PP-H
Couvercle et volant : PP-GR
Capuchon indicateur de position PVC
EPDM, FPM, PTFE (sur demande, NBR)
Commande manuelle ; actionneur pneumatique

- 1 Indicateur optique de position gradué à haute visibilité et protégé par un couvercle transparent muni d'un joint torique d'étanchéité.
- Personnalisation possible par le biais de la couronne d'identification afin d'identifier la vanne sur l'installation en fonction des exigences spécifiques.
- Système DIALOCK®: nouveau volant de commande doté d'un mécanisme de blocage de manœuvre immédiat et ergonomique, qui permet de régler et de bloquer la vanne sur plus de 300 positions
- 4 Le volant et le couvercle sont réalisés en PP-GR à haute résistance mécanique et chimique : cela garantit une protection et une isolation complètes de toutes les parties métalliques intérieures contre le contact des agents extérieurs.
- 5 Raccordement à broche flottante entre la vis de commande et la membrane pour en augmenter l'étanchéité et la durée, en évitant les concentrations de contraintes.
- Nouveau dessin intérieur du corps de la vanne : coefficient de débit nettement augmenté et pertes de charge réduites.

- L'efficacité atteinte a également permis de **réduire les dimensions et le poids de la vanne.**
- Linéarité de la régulation
 : les profils intérieurs de la
 vanne permettent également
 d'améliorer considérablement
 la courbe caractéristique de la
 vanne, pour obtenir un réglage
 particulièrementprécis sur toute
 la course de l'obturateur.
- Support de fixation de la vanne intégré dans le corps doté d'écrous d'ancrage en métal, qui assure aussi une installation simple et rapide sur panneau ou mur avec la platine de montage PMDK (fournie en tant qu'accessoire).

DONNÉES TECHNIQUES


VARIATION DE LA PRESSION EN **FONCTION DE LA TEMPÉRATURE**

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

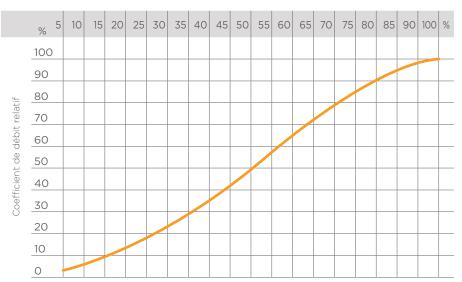
	bar	-40	-20	0	20	40	60	80	100	120	140	°C
	16											
	14											
9	12											
servio	10											
on de	8											
Pression de service	6											
	4											
	2											
	0											

Température de service

DIAGRAMME DES PERTES DE CHARGE

Débit

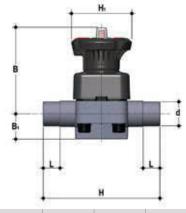
COEFFICIENT DE DÉBIT K_v100


Par coefficient de débit K,100, on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge $\Delta p = 1$ bar pour une position déterminée de la

Le tableau indique les valeurs K_v100 pour une vanne complètement ouverte.

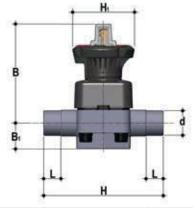
DN	15	20	25	32	40	50	65
K _v 100 I/min	112	261	445	550	1087	1648	1600

COURBE DE DÉBIT EN FONCTION DE L'OUVERTURE


Par coefficient de débit relatif, on entend l'évolution du débit en fonction de la course d'ouverture de la vanne.

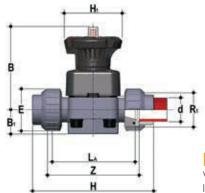
Taux d'ouverture de la vanne

Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.

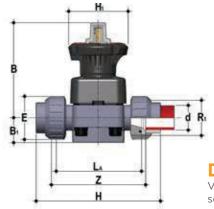

DIMENSIONS

DKDM

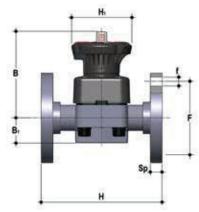
Vanne à membrane DIALOCK® avec embouts mâles pour soudage dans l'emboîture, série métrique


d	DN	PN	В	B ₁	Н	H ₁	L	g	Code EPDM	Code FPM	Code PTFE
20	15	10	102	25	124	80	16	430	DKDM020E	DKDM020F	DKDM020P
25	20	10	105	30	144	80	19	445	DKDM025E	DKDM025F	DKDM025P
32	25	10	114	33	154	80	22	620	DKDM032E	DKDM032F	DKDM032P
40	32	10	119	30	174	80	26	650	DKDM040E	DKDM040F	DKDM040P
50	40	10	147	35	194	120	31	1380	DKDM050E	DKDM050F	DKDM050P
63	50	10	172	46	224	120	38	2135	DKDM063E	DKDM063F	DKDM063P
75	65	10	172	46	284	120	44	2225	DKDM075E	DKDM075F	DKDM075P

DKLDM


Vanne à membrane DIALOCK® avec limiteur de course et embouts mâles pour soudage dans l'emboîture, série métrique

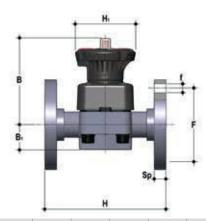
d	DN	PN	В	B ₁	Н	H ₁	L	g	Code EPDM	Code FPM	Code PTFE
20	15	10	115	25	124	80	16	460	DKLDM020E	DKLDM020F	DKLDM020P
25	20	10	118	30	144	80	19	475	DKLDM025E	DKLDM025F	DKLDM025P
32	25	10	127	33	154	80	22	650	DKLDM032E	DKLDM032F	DKLDM032P
40	32	10	132	30	174	80	26	680	DKLDM040E	DKLDM040F	DKLDM040P
50	40	10	175	35	194	120	31	1440	DKLDM050E	DKLDM050F	DKLDM050P
63	50	10	200	46	224	120	38	2195	DKLDM063E	DKLDM063F	DKLDM063P
75	65	10	200	46	284	120	44	2285	DKLDM075E	DKLDM075F	DKLDM075P


DKUIMVanne à membrane DIALOCK® avec embouts union femelles pour soudage dans l'emboîture, série métrique

d	DN	PN	В	B ₁	Е	Н	H ₁	L_A	R ₁	Z	g	Code EPDM	Code FPM	Code PTFE
20	15	10	102	25	41	128	80	90	1"	101	457	DKUIM020E	DKUIM020F	DKUIM020P
25	20	10	105	30	50	150	80	108	1" 1/4	119	500	DKUIM025E	DKUIM025F	DKUIM025P
32	25	10	114	33	58	163	80	116	1" 1/2	127	695	DKUIM032E	DKUIM032F	DKUIM032P
40	32	10	119	30	72	184	80	134	2"	145	781	DKUIM040E	DKUIM040F	DKUIM040P
50	40	10	147	35	79	210	120	154	2" 1/4	165	1526	DKUIM050E	DKUIM050F	DKUIM050P
63	50	10	172	46	98	248	120	184	2" 3/4	195	2410	DKUIM063E	DKUIM063F	DKUIM063P

Vanne à membrane DIALOCK® avec limiteur de course et embouts union femelles pour soudage dans l'emboîture, série métrique

d	DN	PN	В	B ₁	Е	Н	H ₁	L _A	R ₁	Z	g	Code EPDM	Code FPM	Code PTFE
20	15	10	115	25	41	128	80	90	1"	101	487	DKLUIM020E	DKLUIM020F	DKLUIM020P
25	20	10	118	30	50	150	80	108	1" 1/4	119	530	DKLUIM025E	DKLUIM025F	DKLUIM025P
32	25	10	127	33	58	163	80	116	1" 1/2	127	725	DKLUIM032E	DKLUIM032F	DKLUIM032P
40	32	10	132	30	72	184	80	134	2"	145	811	DKLUIM040E	DKLUIM040F	DKLUIM040P
50	40	10	175	35	79	210	120	154	2" 1/4	165	1586	DKLUIM050E	DKLUIM050F	DKLUIM050P
63	50	10	200	46	98	248	120	184	2" 3/4	195	2470	DKLUIM063E	DKLUIM063F	DKLUIM063P

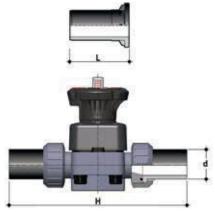


DKOM

Vanne à membrane DIALOCK* à brides fixes, perçage PN10/16. Écartement selon EN 558-1

d	DN	PN	В	B ₁	f	F	Н	H ₁	Sp	U	g	Code EPDM	Code FPM	Code PTFE
20	15	10	102	25	14	65	130	80	13,5	4	588	DKOM020E	DKOM020F	DKOM020P
25	20	10	105	30	14	75	150	80	13,5	4	645	DKOM025E	DKOM025F	DKOM025P
32	25	10	114	33	14	85	160	80	14	4	910	DKOM032E	DKOM032F	DKOM032P
40	32	10	119	30	18	100	180	80	14	4	1110	DKOM040E	DKOM040F	DKOM040P
50	40	10	147	35	18	110	200	120	16	4	1955	DKOM050E	DKOM050F	DKOM050P
63	50	10	172	46	18	125	230	120	16	4	2905	DKOM063E	DKOM063F	DKOM063P
75	65	10	225	55	18	145	290	120	21	4	3325	DKOM075E	DKOM075F	DKOM075P

Version DKLOM disponible sur demande


DKOAM

Vanne à membrane DIALOCK $^{\circ}$ à brides fixes, perçage ANSI B16.5 cl. 150 #FF

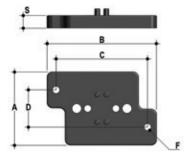
d	DN	PN	В	B ₁	f	F	Н	H ₁	Sp	U	g	Code EPDM	Code FPM	Code PTFE
1/2"	15	10	102	25	14	60,3	108	80	13,5	4	572	DKOAM012E	DKOAM012F	DKOAM012P
3/4"	20	10	105	30	15,7	69,9	150	80	13,5	4	645	DKOAM034E	DKOAM034F	DKOAM034P
1"	25	10	114	33	15,7	79,4	160	80	14	4	910	DKOAM100E	DKOAM100F	DKOAM100P
1" 1/4	32	10	119	30	15,7	88,9	180	80	14	4	1110	DKOAM114E	DKOAM114F	DKOAM114P
1" 1/2	40	10	147	35	15,7	98,4	200	120	16	4	1955	DKOAM112E	DKOAM112F	DKOAM112P
2"	50	10	172	46	19	120,7	230	120	16	4	2905	DKOAM200E	DKOAM200F	DKOAM200P
75	65	10	172	46	19	139,7	290	120	21	4	3325	DKOM075E	DKOM075F	DKOM075P

Version DKLOAV disponible sur demande

ACCESSOIRES

Q/BBM-LCollets en PP-H à embout long pour soudage bout à bout

d	DN	L	Н	SDR	Code
20	15	95	280	11	QBBML11020
25	20	95	298	11	QBBML11025
32	25	95	306	11	QBBML11032
40	32	95	324	11	QBBML11040
50	40	95	344	11	QBBML11050
63	50	95	374	11	QBBML11063

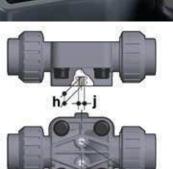

Q/BBM-CCollets en PP-H à embout court pour soudage bout à bout

d	DN	L	Н	SDR	Code
20	15	55	200	11	QBBMC11020
25	20	55	218	11	QBBMC11025
32	25	55	226	11	QBBMC11032
40	32	55	244	11	QBBMC11040
50	40	55	264	11	QBBMC11050
63	50	55	294	11	QBBMC11063

Q/BBE-L

Collets en PE100 à embout long pour assemblage avec manchons électriques ou bout à

d	DN	L	Н	SDR	Code
20	15	95	280	11	QBBEL11020
25	20	95	298	11	QBBEL11025
32	25	95	306	11	QBBEL11032
40	32	95	324	11	QBBEL11040
50	40	95	344	11	QBBEL11050
63	50	95	374	11	QBBEL11063


PMDK

Platine de montage

d	DN	А	В	С	D	F	S	Code
20	15	65	97	81	33	5,5	11	PMDK1
25	20	65	97	81	33	5,5	11	PMDK1
32	25	65	97	81	33	5,5	11	PMDK1
40	32	65	97	81	33	5,5	11	PMDK2
50	40	65	144	130	33	6,5	11	PMDK2
63	50	65	144	130	33	6,5	11	PMDK2
75	65	65	144	130	33	6,5	11	PMDK2

COLLIERS ET SUPPORTAGE

Manuelles ou motorisées, tous les vannes doivent, dans de nombreuses applications, être supportées.

La série des vannes DK est munie de supports intégrés qui permettent un ancrage direct sur le corps de la vanne sans devoir recourir à d'autres composants.

Pour les installations murales ou sur panneau, il est possible d'employer la platine de montage PMDK prévue à cet effet, fournie comme accessoire, qui doit être tout d'abord fixée à la vanne.

La platine PMDK permet aussi d'aligner la vanne DK avec les colliers FIP de type ${\sf ZIKM}.$

-)				
d	DN	h	1	j
20	15	10	25	M6
25	20	10	25	M6
32	25	10	25	M6
40	32	10	25	M6
50	40	13	44,5	M8
63	50	13	44,5	M8
75	65	13	44,5	M8

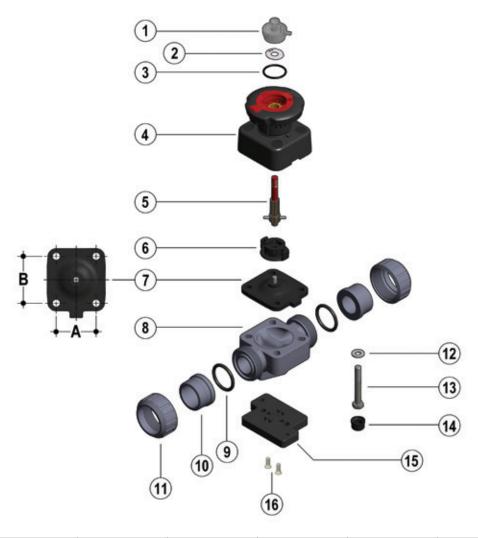
PERSONNALISATION

La vanne DK DN 15 à 65 DIALOCK® est prévue pour être personnalisée au moyen d'une couronne d'identification en PVC blanc.

La couronne (B), insérée à l'intérieur du bouchon de protection transparent (A), peut être ôtée et, une fois renversée, utilisée pour indiquer sur les vannes les numéros de série d'identification ou des indications de service comme, par exemple, la fonction de la vanne à l'intérieur de l'installation, le fluide transporté, mais aussi des informations spécifiques pour le service clientèle, comme le nom du client ou la date et le lieu où l'installation a été effectuée. Le capuchon de protection transparent résistant à l'eau et muni d'un joint torique préserve la pastille personnalisée contre les détériorations.

Pour avoir accès à la couronne d'identification, veiller ce que le volant se trouve en position de déblocage et suivre la démarche indiquée ci-dessous :

- 1) Tourner à fond le capuchon de protection transparent dans le sens anti-horaire (fig. 1) et l'ôter en le tirant vers le haut en insérant, si besoin est un tournevis dans la fissure prévue à cet effet (C) pour faciliter l'opération (fig. 2).
- 2) Retirer la platine à l'intérieur du capuchon de protection transparent et procéder à la personnalisation (fig. 3).
- 3) Remonter le tout en veillant à ce que le joint torique d'étanchéité du capuchon de protection ne ressorte pas de son logement (fig. 4).



177

COMPOSANTS

VUE ÉCLATÉE DN 15 À 50

DN	15	20	25	32	40	50	65
А	40	40	46	46	65	78	78
В	44	44	54	54	70	82	82

- 1 · Capuchon de protection transparent (PVC 1)*
- Couronne d'identification (PVC-U - 1)
- **3** · Joint torique (EPDM 1)
- 4 · Bloc de manœuvre (PP-GR / PVDF - 1)
- 5 · Tige filetée Indicateur (Acier INOX - 1)

- 6 · Compresseur (PA-GR IXEF® 1)
- 7 · Membrane d'étanchéité (EPDM, FPM, PTFE - 1)*
- 8 · Corps de vanne (PP-H 1)*
- 9 · Joint d'étanchéité torique du collet (EPDM-FPM - 2)*
- **10** · Manchon (PP-H 2)*
- 11 · Écrou union (PP-H 2)*

- 12 · Rondelle (Acier INOX 4)
- 13 · Boulon (Acier INOX 4)
- 14 · Bouchon de protection (PE 4)
- 15 · Platine de montage (PP-GR 1)**
- 16 · Vis (Acier INOX 2)**

^{*} Pièces de rechange

^{**} Accessoires

DÉMONTAGE

- 1) Isoler la vanne de la ligne (décharger la pression et vider le tuyau)
- Si besoin est, débloquer le volant de manœuvre en appuyant vers le bas (fig. 5) et ouvrir complètement la vanne en tournant le volant dans le sens anti-horaire
- 3) Dévisser complètement les écrous union (11) et retirer latéralement la
- 4) Enlever les bouchons de protection (14) et retirer les boulons (13) avec leurs rondelles (12).
- 5) Séparer le corps de la vanne (8) du groupe de manœuvre (4).
- 6) Tourner le volant de manœuvre dans le sens horaire de manière à dégager la tige filetée (5), le compresseur (6) et la membrane (7)
- 7) Dégager la membrane (7) et ôter l'obturateur (6).

MONTAGE

- Insérer le compresseur (6) sur la tige filetée (5) en l'alignant correctement avec la fiche de référence de la tige.
- 2) Visser la membrane (7) sur la tige filetée (5).
- 3) Lubrifier la tige filetée (5) et l'insérer dans le groupe de manœuvre (4), puis tourner le volant dans le sens anti-horaire de manière à visser complètement la tige (5).
 Veiller attentivement à ce que le compresseur (6) et la membrane soient correctement alignés avec les logements présents dans le groupe de manœuvre (4) (fig. 7).
- Monter le groupe de manœuvre (4) sur le corps de la vanne (8) et visser les boulons (13) avec leurs rondelles (12).
- 5) Serrer les boulons (13) de façon équilibrée (en croix) en respectant les couples de serrage suggérés sur la notice d'instruction.
- 6) Remonter les bouchons de protection (14)
- 7) Placer la vanne entre les manchons (10) et serrer les écrous union (11), en veillant à ce que les joints d'étanchéité toriques du collet (9) ne sortent pas de leur logement.
- 8) Bloquer, si besoin est, le volant de manœuvre en le saisissant et en le tirant vers le haut (fig. 6).

Remarque: pendant les opérations de montage, il est conseillé de lubrifier la tige filetée.

À ce propos, il est rappelé que les huiles minérales, agressives pour le caoutchouc EPDM, sont déconseillées.

Fig. 7

INSTALLATION

Pour procéder à l'installation, suivre attentivement les instructions suivantes : (instructions valables pour les versions à embouts union 3 pièces). La vanne peut être installée dans n'importe quelles position et direction.

- Vérifier que les tuyaux auxquels la vanne doit être raccordée sont alignés, de manière à éviter les contraintes mécaniques sur les raccordements union de la vanne.
- 2) Procéder au dévissage des écrous union (11) et les enfiler sur les tronçons de tuyau.
- 3) Procéder au collage, au soudage ou au vissage des manchons (10) sur les tronçons de tuyau.
- 4) Placer le corps de la vanne entre les manchons, en veillant à ce que les joints d'étanchéité toriques du collet (9) ne sortent pas de leur logement.
- 5) Serrer complètement les écrous union (11).
- 6) Si cela est nécessaire, supporter le tuyau avec des colliers FIP ou bien avec le support intégré dans la vanne (voir le paragraphe « Colliers et supportage »).

Remarque : Avant de mettre la vanne en service, s'assurer que les boulons du corps de la vanne (13) sont serrés correctement aux couples suggérés.

BLOCAGE DE LA MANŒUVRE

La vanne DK est dotée du système de blocage du volant DIALOCK® qui permet de bloquer la manœuvre de la vanne.

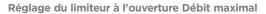
Fia. 9

Le système peut être utilisé tout simplement en soulevant le volant une fois que la position désirée est atteinte (fig. 8).

Pour débloquer la manœuvre, il suffit de remettre le volant dans la position précédente en appuyant vers le bas (fig. 6).

.Quand le système est en position de blocage, il est également possible d'installer un cadenas pour préserver l'installation contre les manipulations (fig. 9).

LIMITEUR DE COURSE


La vanne à membrane DKL est munie d'un système de réglage de la course du volant qui permet de régler à volonté les débits mini et maxi de la vanne et de préserver la membrane contre toute compression excessive lors de la fermeture.

Le système permet de modifier la plage de manœuvre de la vanne en agissant sur deux réglages indépendants qui déterminent des butées mécaniques à la fermeture et à l'ouverture. La vanne est vendue avec les limiteurs de course placés de manière à ne pas limiter la course, tant à la fermeture qu'à l'ouverture.

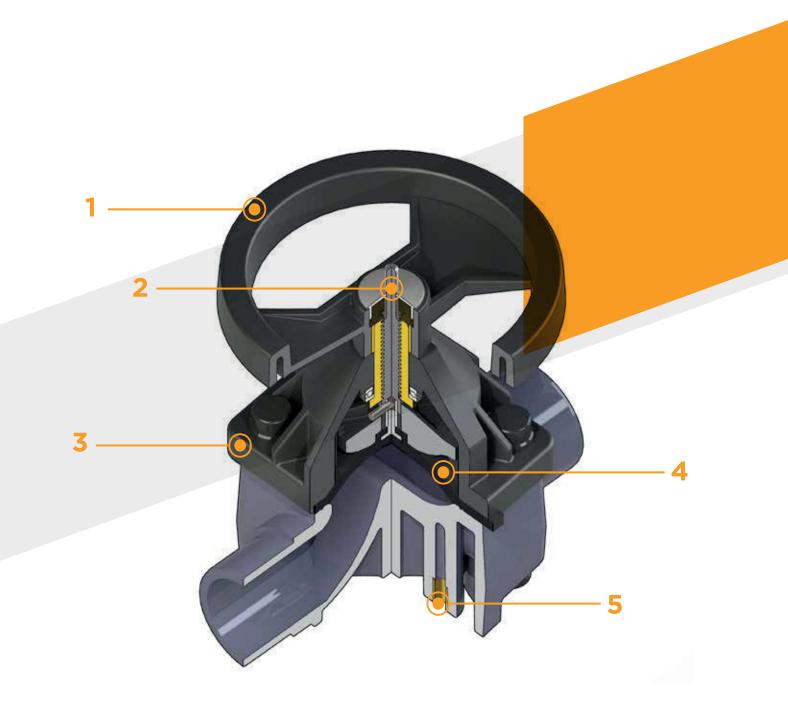
Pour accéder aux réglages, il est nécessaire d'ôter le capuchon de protection transparente(A) comme cela a été décrit précédemment (voir le paragraphe « Personnalisation »).

- 1) Tourner le volant dans le sens horaire, de manière à atteindre le débit minimal désiré ou la position de fermeture.
- 2) Serrer à fond l'écrou (D) et le bloquer dans cette position en serrant le contre-écrou (E). Au cas où l'on voudrait exclure la fonction de limitation de la course en fermeture, dévisser complètement les écrous (D et E). De cette manière, la vanne atteindra le point de fermeture complète.
- 3) Remonter le capuchon de protection transparent en veillant à ce que le joint torique d'étanchéité ne ressorte pas de son logement.

- Tourner le volant dans le sens anti-horaire, de manière à atteindre le débit maximal désiré.
- 2) Tourner la poignée (F) dans le sens anti-horaire jusqu'à ce que l'on atteigne la butée d'arrêt. La couronne montre le sens de rotation de la rondelle pour obtenir un débit maximal inférieur ou supérieur.
 - Au cas où il serait nécessaire de limiter la course à l'ouverture, tourner plusieurs fois la poignée (F) dans le sens horaire. De cette manière, la vanne atteindra le point d'ouverture complète.
- 3) Remonter le capuchon de protection transparent en veillant à ce que le joint torique d'étanchéité ne ressorte pas de son logement.

VM DN 80 À 100

PPH


∨M **DN 80 À 100**

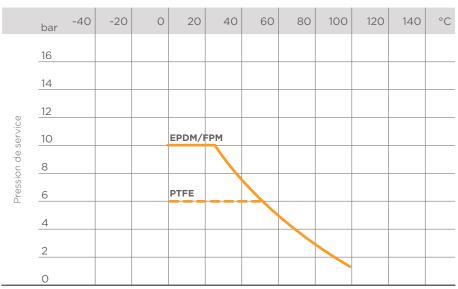
La vanne VM est particulièrement indiquée pour la régulation et l'arrêt sur les réseaux de transport de liquides chargés ou abrasifs. La commande à volant et l'étanchéité à membrane garantissent une régulation précise et efficace et réduisent au minimum les risques de coup de bélier.

VANNE À MEMBRANE

- Système d'assemblage par soudage, par vissage et par bridage
- Fabrication compacte et masse limitée.
- Haut coefficient de débit et pertes de charges réduites.
- Organes de manœuvre internes en métal, isolés du fluide, avec palier en POM pour réduire le frottement au minimum .
- Modularité de la gamme : seulement 5 tailles de membranes et couvercles pour 9 dimensions differents.
- Volant en saillie qui maintient toujours la même hauteur pendant la rotation

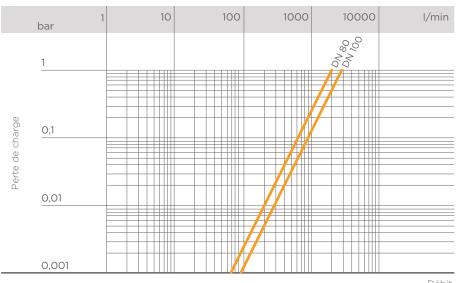
Spécifications techniques	s
Fabrication	Vanne à membrane à selle simple
Gamme de dimensions	DN 80 à 100
Pression nominale	PN 10 pour de l'eau à 20 °C PN 6 pour de l'eau à 20 °C (version en PTFE)
Plage de température	0 °C à 100 °C
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494
	Bridage : ISO 7005-1, EN 1092-1, EN ISO 15494, EN 558-1, DIN 2501, ANSI B16.5 cl.150
Références normatives	Critères de fabrication : EN ISO 16138, EN ISO 15494
	Méthodes et conditions requises pour les tests : ISO 9393
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318
Matériaux de la vanne	Corps: PP-H Couvercle: PP-GR Volant PA-GR
Matériau de la membrane	EPDM, FPM, PTFE (sur demande, NBR)
Options de commande	Commande manuelle ; actionneur pneumatique

- Volant de commande en (PA-GR) à haute résistance mécanique avecpoignée ergonomique pour une excellente manœuvrabilité.
- Indicateur optique de position métallique fourni en série
- Couvercle en PP-GR à protection totale.


Profil intérieur de serrage de la membrane circulaire et symétrique.

- Membrane d'étanchéité disponible en EPDM, FPM, PTFE (NBR sur demande) et facile à remplacer.
- 5 Écrous d'ancrage en métal

DONNÉES TECHNIQUES


VARIATION DE LA PRESSION EN **FONCTION DE LA TEMPÉRATURE**

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

Température de service

DIAGRAMME DES PERTES DE CHARGE

Débit

COEFFICIENT DE DÉBIT K_v100

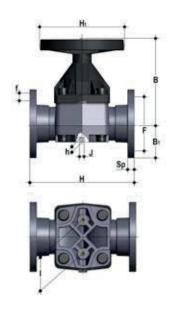
Par coefficient de débit K,100, on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge $\Delta p = 1$ bar pour une position déterminée de la

Le tableau indique les valeurs K_v100 pour une vanne complètement ouverte.

DN	80	100
K _v 100 l/min	2000	2700

Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.

DIMENSIONS

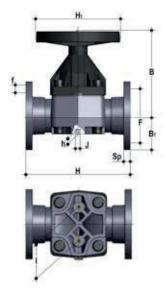


VMDM

Vanne à membrane avec embouts mâles pour soudage dans l'emboîture, série métrique

d	DN	PN	В	B ₁	Н	h	H ₁	1	J	L	g	Code EPDM	Code FPM	Code PTFE
90	80	*10	225	55	300	23	200	100	M12	51	6040	VMDM090E	VMDM090F	VMDM090P
110	100	*10	295	69	340	23	250	120	M12	61	9160	VMDM110E	VMDM110F	VMDM110P

*PTFE PN6



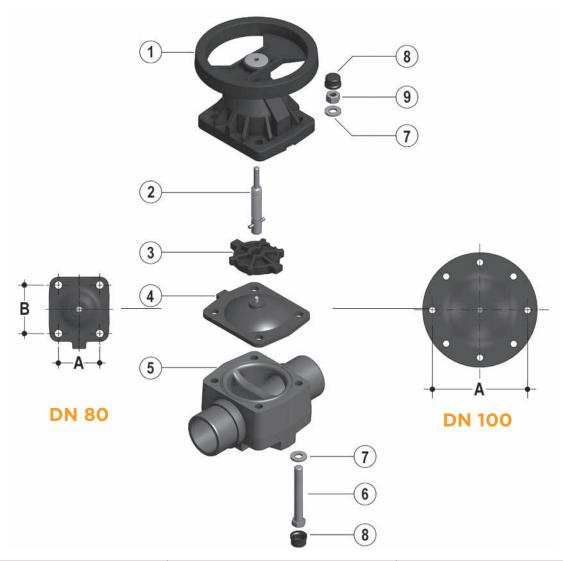
VMOM

Vanne à membrane à brides fixes, perçage PN10/16. Écartement selon EN 558-1

d	DN	PN	В	B ₁	F	f	Н	H ₁	I	J	Sp	U	g	Code EPDM	Code FPM	Code PTFE
90	80	*10	225	55	160	18	310	200	100	M12	22	8	7500	VMOM090E	VMOM090F	VMOM090P
110	100	*10	295	69	180	18	350	250	120	M12	23	8	10480	VMOM110E	VMOM110F	VMOM110P

*PTFE PN6

VMOAM


Vanne à membrane à brides fixes, perçage ANSI B16.5 cl.150 #FF

d	PN	В	B ₁	F	f	Н	H ₁	I	J	Sp	U	g	Code EPDM	Code FPM	Code PTFE
3"	*10	225	55	152,4	19	310	200	100	M12	22	4	7500	VMOAM300E	VMOAM300F	VMOAM300P
4"	*10	295	69	190,5	19	350	250	120	M12	23	8	10480	VMOAM110E	VMOAM110F	VMOAM110P

*PTFE PN6

COMPOSANTS

VUE ÉCLATÉE DN 80 À 100

DN	80	100
A	114	193
В	127	-

- 1 · Couvercle (PP-GR 1); Volant (PA-GR - 1)
- 2 · Indicateur tige (Acier INOX - 1)
- **3** · Obturateur (PBT 1)
- 4 · Membrane d'étanchéité (EPDM, FPM, PTFE - 1)
- 5 · Corps (PP-H 1)
- 6 · Vis hexagonale (Acier galvanisé - 4)
- 7 · Rondelle (Acier galvanisé 4)
- 8 · Bouchon de protection (PE 4)
- 9 · Écrou (Acier galvanisé 4)

Le matériau du composant et la quantité fournie sont indiqués entre parenthèses

DÉMONTAGE

En présence de fluides dangereux, il faut drainer et ventiler la vanne.

La membrane est la partie de la vanne la plus soumise au stress mécanique et chimique du fluide ; le contrôle de l'état de la membrane doit être effectué régulièrement en fonction des conditions de service ; pour cela, il faut la détacher du volant et du corps de la vanne.

- Intercepter le fluide en amont de la vanne et s'assurer qu'il ne reste pas sous pression (décharger en aval si besoin est).
- 2) Dévisser les vis (6) et séparer le corps (5) du bloc de manœuvre.
- 3) Dévisser la membrane (4) de l'obturateur (3). Tourner le volant dans le sens horaire, de façon à libérer le bloc tige-obturateur. Nettoyer ou remplacer la membrane (4) si besoin est. Lubrifier la tige (2) si besoin est.

MONTAGE

- Appliquer l'obturateur (3) sur la tige
 (2) en prêtant attention à l'orientation de la goupille présente sur la tige.
- 2) Visser la membrane (4) sur la tige (2) en veillant bien à ne pas l'étirer.
- 3) Mettre la vanne en position d'ouverture.
- Placer le bloc couvercle-volant (1) sur le corps (5) et unir les deux composants avec les boulons.
- 5) Agencer les bouchons de protection (8) au moyen d'une simple pression.

INSTALL ATION

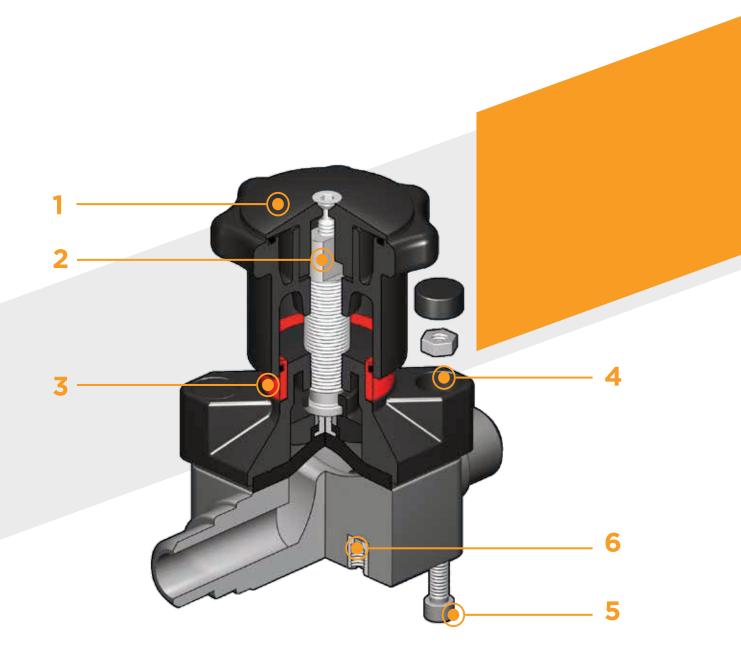
La vanne peut être installée dans n'importe quelles position et direction. Pendant le démarrage de l'installation, s'assurer qu'il n'y a pas de fuite entre la membrane et le corps de la vanne ; si besoin est, serrer les vis de raccordement (6).

Remarque : pendant les opérations de montage, il est conseillé de lubrifier la tige filetée. À ce propos, il est rappelé que les huiles minérales, agressives pour le caoutchouc EPDM, sont déconseillées.

En outre, étant donné que le joint à membrane est comprimé entre le corps et l'actionneur, les tirants et les écrous du corps de la vanne doivent, si besoin est, être contrôlés et serrés avant l'installation.

CM DN 12 À 15

PPH


CM **DN 12 À 15**

La CM est une vanne à membrane à commande manuelle présentant des dimensions réduites et une structure particulièrement compacte, idéale pour être utilisée dans des espaces restreints.

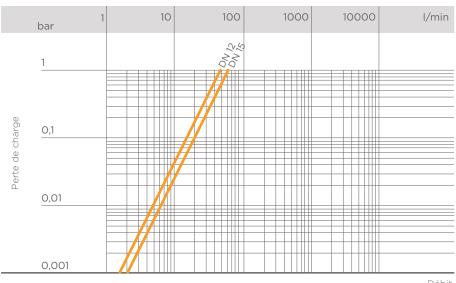
VANNE À MEMBRANE COMPACTE

- Système d'assemblage par soudage et par filetage.
- Construction extrêmement compacte.
- · Organes de manœuvre intérieurs en métal, isolés du fluide.
- Tige de manœuvre en acier inoxydable.
- Compresseur avec support de la membrane flottante
- Remplacement facile de la membrane d'étanchéité
- Composants intérieurs anticorrosion.
- Nouveau système d'étanchéité CDSA (Circular Diaphragm Sealing Area) qui offre les avantages suivants :
 - distribution uniforme de la pression de l'obturateur sur la membrane d'étanchéité.
- diminution du couple de serrage des vis de fixation entre le corps et le bloc de manœuvre.
- réduction du stress mécanique pour tous les composants de la vanne (actionneur, corps et membrane).
- facilité de nettoyage des zone intérieures de la vanne.
- minimisation du risque d'accumulation de dépôts, de contamination ou de détérioration de la membrane à cause de phénomènes de cristallisation.
- réduction du couple de manœuvre.

Spécifications technique	s
Fabrication	Vanne à membrane compacte à selle simple
Gamme de dimensions	DN 12 à 15
Pression nominale	PN 6 pour de l'eau à 20 °C
Plage de température	0 °C à 100 °C
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494
	Vissage : ISO 228-1, DIN 2999
	Bridage : ISO 7005-1, EN 1092-1, EN ISO 15494, EN 558-1, DIN 2501, ANSI B16.5 cl.150
Références normatives	Critères de fabrication : EN ISO 16138, EN ISO 15494
	Méthodes et conditions requises pour les tests : ISO 9393
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318
Matériaux de la vanne	Corps: PP-H Couvercle et volant: PA-GR
Matériaux de la membrane	EPDM, FPM, PTFE
Options de commande	Commande manuelle ; actionneur pneumatique

- Volant de commande en PA-GR complètement scellé à haute résistance mécanique, avec poignée ergonomique pour garantir une excellente manœuvrabilité.
- 2 Limiteur de course intégré et réglable qui permet de limiter une compression trop élevée de la membrane ou de garantir toujours un flux minimal de fluide.
- Indicateur optique de position fourni en série.
- 4 Couvercle en PA-GR avec écrous en acier INOX complètement protégés par des bouchons en plastique sans zones d'accumulation d'impuretés. Profil intérieur de serrage de la membrane circulaire et symétrique.
- 5 Boulons en acier INOX avec possibilité de montage également par le haut.
- **Écrous d'ancrage en métal** pour le supportage de la vanne.

DONNÉES TECHNIQUES


VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

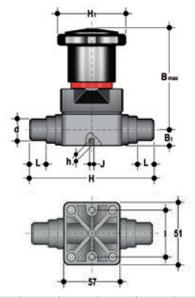
	bar	-40	-20	0	20	40	60	80	100	120	140	°C
	16											
	14											
Φ	12											
servic	10											
on de	8											
Pression de service	6											
	4											
	2											
	0									•		

Température de service

DIAGRAMME DES PERTES DE CHARGE

Débit

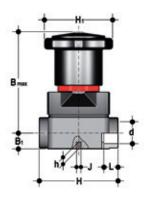
COEFFICIENT DE DÉBIT K_v100

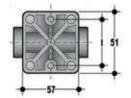

Par coefficient de débit K_v 100, on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge Δp = 1 bar pour une position déterminée de la vanne.

Le tableau indique les valeurs K_v100 pour une vanne complètement ouverte.

DN	12	15
K _v 100 l/min	47	60

Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.

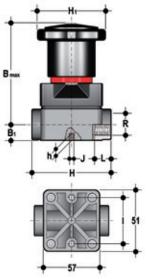

DIMENSIONS



CMDM

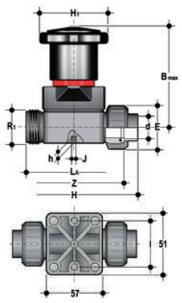
Vanne à membrane compacte avec embouts mâles pour soudage dans l'emboîture, série métrique

d	DN	PN	B max	B ₁	Н	h	H ₁	1	J	L	g	Code EPDM	Code FPM	Code PTFE
20	15	6	86	15	124	8	59	35	M5	17	270	CMDM020E	CMDM020F	CMDM020P



CMIM

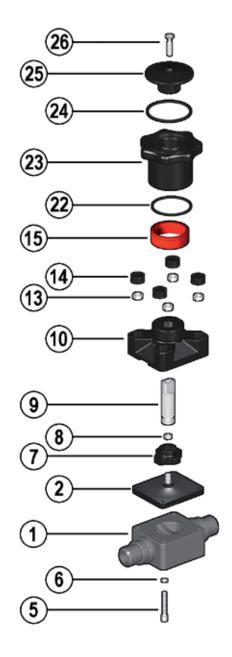
Vanne à membrane compacte avec embouts femelles pour soudage dans l'emboîture, série métrique


d	DN	PN	B max	B ₁	Н	h	H ₁	1	J	L	g	Code EPDM	Code FPM	Code PTFE
16	12	6	86	15	75	8	59	35	M5	14	240	CMIM016E	CMIM016F	CMIM016P
20	15	6	86	15	75	8	59	35	M5	16	240	CMIM020E	CMIM020F	CMIM020P

CMFM

Vanne à membrane compacte avec embouts femelles, taraudage cylindrique gaz

R	DN	PN	B max	B ₁	Н	h	H ₁	I	J	L	g	Code EPDM	Code FPM	Code PTFE
3/8"	12	6	86	15	75	8	59	35	M5	12	240	CMFM038E	CMFM038F	CMFM038P
1/2"	15	6	86	15	75	8	59	35	M5	15	240	CMFM012E	CMFM012F	CMFM012P


CMUIM

Vanne à membrane compacte avec embouts union femelles pour soudage dans l'emboîture, série métrique

d	DN	PN	B max	Е	Н	h	H ₁	I	J	L_{A}	R_1	Z	g	Code EPDM	Code FPM	Code PTFE
20	15	6	86	47,5	130	8	59	35	M5	90	1"	98	255	CMUIM020E	CMUIM020F	CMUIM020P

COMPOSANTS

VUE ÉCLATÉE

- 1 · Corps (PP-H 1)
- 2 · Membrane d'étanchéité (EPDM, FPM, PTFE - 1)
- 5 · Vis de fixation (Acier INOX 4)
- 6 · Rondelle (Acier INOX 4)
- 7 · Obturateur (PA-GR 1)

- 8 · Écrou (Acier INOX 1)
- 9 · Tige (Acier INOX 1)
- 10 · Couvercle (PA-GR 1)
- 13 · Écrou (Acier INOX 4)
- 14 · Bouchon de protection (POM - 4)
- 15 · Indicateur visuel (PVDF 1)
- 22 · Joint torique (NBR 1)
- 23 · Volant (PA-GR 1)
- 24 · Joint torique (NBR 1)
- 25 · Couvercle (PA-GR 1)
- **26** · Vis de fixation (Acier INOX 1)

Le matériau du composant et la quantité fournie sont indiqués entre parenthèses

DÉMONTAGE

Si la vanne est déjà installée sur la ligne, il faut intercepter le fluide convoyé en amont et s'assurer qu'il n'y a pas de pression ; si besoin est, décharger complètement l'installation en aval. En présence de fluides dangereux, il faut drainer et ventiler la vanne.

La membrane est la partie de la vanne la plus assujettie au stress mécanique et chimique du fluide ; le contrôle de l'état de la membrane doit être fait de manière cyclique en fonction des conditions de service ; pour effectuer cette opération, il faut la détacher du volant et du corps de la vanne.

- 1) Dévisser les quatre vis (5) et séparer le corps (1) du bloc de manœuvre.
- 2) Dévisser la membrane (2) de l'obturateur (7).
- Si besoin est, nettoyer ou changer la membrane (2).
- 4) Si besoin est, lubrifier la tige (9).

MONTAGE

- La membrane (2) doit être vissée complètement sur le compresseur (7) dans le sens horaire; si besoin est, dévisser dans le sens inverse pour obtenir un centrage parfait des trous pour les vis.
- Fixer le couvercle (10) avec les vis (5) sur le corps (1). Serrer les vis à croix en veillant bien à ne pas trop comprimer la membrane.

INSTALLATION

La vanne peut être installée dans n'importe quelles position et direction. Pendant le démarrage de l'installation, d'assurer qu'il n'y a pas de pertes entre la membrane et le corps ; si besoin est, serrer les vis de raccordement (5).

RÉGLAGE

La réglage effectué en usine garantit toujours l'étanchéité sans recourir à d'autres interventions. Pour régler différemment : tourner le volant jusqu'à la position d'ouverture minimale requise, dévisser la vis (26) avec une clé hexagonale mâle.

Retirer le couvercle (25) et tourner le volant (23) dans le sens horaire, jusqu'à ce que l'on ne sente plus aucune résistance à la rotation.

Si besoin est, repositionner le joint torique (24) dans son logement et insérer de nouveau le couvercle (25) sur le volant : l'encastrement à deux D doit s'insérer sur la tige (9) et puis, en effectuant des rotations minimes, il faut faire correspondre les rainures du couvercle avec celles du volant.

Fixer la vis (26) avec un couple assez élevé.

Chaque tour du volant correspond à 1,75 mm de course.

RV DN 15 À 100

PPH

RV **DN 15 À 100**

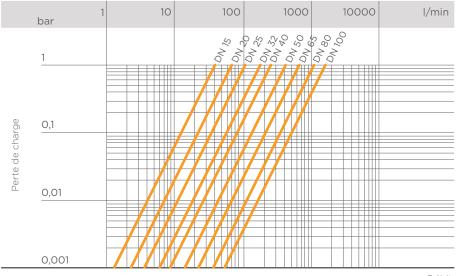
Le filtre à tamis RV limite le passage de particules solides présentes dans le fluide au moyen d'une petite grille filtrante.

FILTRE À TAMIS

- Système d'assemblage par soudage, par vissage et par bridage
- Filtre monté sur un support facilement amovible qui facilite le nettoyage ou le remplacement du filtre.
- Compatibilité du matériau de la vanne (PP-H) avec le transport d'eau, eau potable et autres substances alimentaires selon les réglementations en vigueur
- Possibilité d'effectuer l'entretien avec le corps de vanne installé

Spécifications techniques	s
Fabrication	Filtre à tamis
Gamme de dimensions	DN 15 à 100
Pression nominale	DN 15 à 50 : PN 10 pour de l'eau à 20 °C DN 65 : PN 6 pour de l'eau à 20 °C DN 80 à 100 : PN 4 pour de l'eau à 20 °C
Plage de température	0 °C à 100 °C
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494
	Vissage : ISO 228-1, DIN 2999
	Bridage : ISO 7005-1, EN 1092-1, EN ISO 15494, EN 558-1, DIN 2501, ANSI B16.5 cl.150
Références normatives	Critères de fabrication : EN ISO 15494
	Méthodes et conditions requises pour les tests : ISO 9393
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318
Matériaux de la vanne	Corps: PP-H Filtre: PP
Matériaux d'étanchéité	EPDM ou FPM

DONNÉES TECHNIQUES


VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

Température de service

DIAGRAMME DES PERTES DE CHARGE

Débit

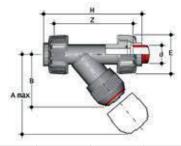
COEFFICIENT DE DÉBIT K_V100

Par coefficient de débit K_v 100, on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge Δp = 1 bar pour une position déterminée de la vanne.

Le tableau indique les valeurs K_v100 pour une vanne complètement ouverte.

DN									100
K _v 100 l/min	40	70	103	188	255	410	650	1050	1700

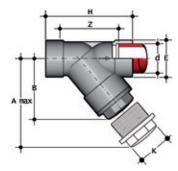
DIMENSIONS DU FILTRE


Pas (mm)	1,5
nombre de trous par cm²	42
série ASTM équivalente en mesh	20
ø trou équivalent µm	800
matériau du filtre	PP

SURFACE TOTALE DE FILTRATION A_{tot} (cm²)

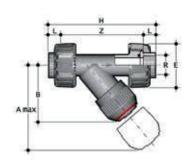
DN									100
A_{tot}	16	23,5	36	53	69	101	197	247	396

Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.


DIMENSIONS

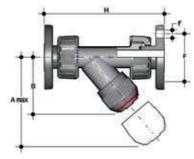
RVUIM

Filtre à tamis à embouts union femelles pour soudage dans l'emboîture, série métrique


d	DN	PN	A max	В	Е	Н	Z	Fig.	g	Code EPDM	Code FPM
20	15	10	125	71	55	138	109	А	148	RVUIM020E	RVUIM020F
25	20	10	145	83	65	157	125	А	195	RVUIM025E	RVUIM025F
32	25	10	165	94	74	179	143	А	297	RVUIM032E	RVUIM032F
40	32	10	190	109	86	205	164	А	475	RVUIM040E	RVUIM040F
50	40	10	210	119	99	244	197	А	675	RVUIM050E	RVUIM050F
63	50	10	240	142,5	120	294	239	А	1100	RVUIM063E	RVUIM063F

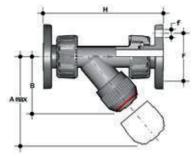
RVIM

Filtre à tamis à embouts femelles pour soudage dans l'emboîture, série métrique


d	DN	PN	A max	В	Е	Н	K	Z	Fig.	g	Code EPDM	Code FPM
75	65	6	300	176	103	241	96	179	В	1580	RVIM075E	RVIM075F
90	80	4	325	193	115	260	105	189	В	1920	RVIM090E	RVIM090F
110	100	4	385	229	138	323	-	240	С	3000	RVIM110E	RVIM110F

RVUFM

Filtre à tamis à embouts union femelles, taraudage cylindrique gaz


d	DN	PN	A max	В	Е	Н	Z	Fig.	g	Code EPDM	Code FPM
1/2"	15	10	125	71	55	142	112	А	148	RVUFM012E	RVUFM012F
3/4"	20	10	145	83	65	159	126	А	195	RVUFM034E	RVUFM034F
1"	25	10	165	94	74	183	145	А	297	RVUFM100E	RVUFM100F
1" 1/4	32	10	190	109	86	214	171	А	475	RVUFM114E	RVUFM114F
1" 1/2	40	10	210	119	99	235	192	А	675	RVUFM112E	RVUFM112F
2"	50	10	240	143	120	285	234	А	1100	RVUFM200E	RVUFM200F

RVUOM

Filtre à tamis avec embouts union et brides fixes, perçage EN/ISO/DIN PN10/16.

d	DN	PN	A max	В	F	f	Н	g	Code EPDM	Code FPM
20	15	10	125	72	65	14	163	248	RVUOM020E	RVUOM020F
25	20	10	145	84	75	14	193	295	RVUOM025E	RVUOM025F
32	25	10	165	95	85	14	211	397	RVUOM032E	RVUOM032F
40	32	10	190	111	100	18	244	625	RVUOM040E	RVUOM040F
50	40	10	210	120	110	18	277	825	RVUOM050E	RVUOM050F
63	50	10	240	139	125	18	331	1250	RVUOM063E	RVUOM063F

RVUOAM

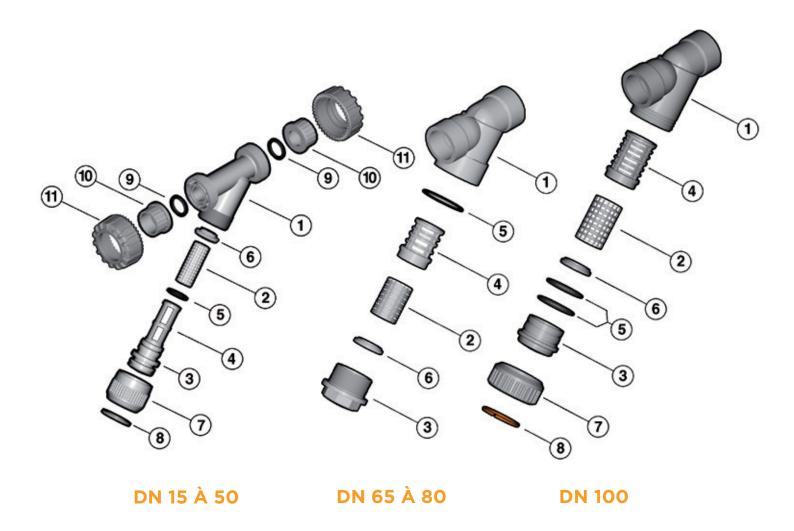
Filtre à tamis avec embouts union et brides fixes, perçage ANSI B16.5 cl.150 #FF

d	DN	PN	A max	В	F	f	Н	g	Code EPDM	Code FPM
1/2"	15	10	125	72	60	16	175	248	RVUOAM012E	RVUOAM012F
3/4"	20	10	145	84	70	16	214	295	RVUOAM034E	RVUOAM034F
1"	25	10	165	95	79	16	237	397	RVUOAM100E	RVUOAM100F
1" 1/4	32	10	190	111	89	16	253	625	RVUOAM114E	RVUOAM114F
1" 1/2	40	10	210	120	98	16	289	825	RVUOAM112E	RVUOAM112F
2"	50	10	240	139	121	19	333	1250	RVUOAM200E	RVUOAM200F

RVOM

Filtre à tamis à brides fixes, perçage EN/ISO/DIN PN10/16.

d	DN	PN	A max	В	F	f	H	g	Code EPDM	Code FPM
75	65	6	300	176	145	18	356	5120	RVOM075E	RVOM075F
90	80	4	325	192	160	18	404	6020	RVOM090E	RVOM090F
110	100	4	385	231	180	18	475	7965	RVOM100E	RVOM100F


RVOAM

Filtre à tamis à brides fixes, perçage ANSI B16.5 cl.150 #FF

d - Taille	DN	PN	A max	В	F	f	Н	g	Code EPDM	Code FPM
75 - 2" 1/2	65	6	300	176	139,7	18	356	4725	RVOAM075E	RVOAM075F
90 - 3"	80	4	325	192	152,4	18	404	5175	RVOAM090E	RVOAM090F
110 - 4"	100	4	385	231	190,5	18	475	7405	RVOAM100E	RVOAM100F

COMPOSANTS

VUE ÉCLATÉE

- 1 · Corps (PP-H-1)
- 2 · Filtre (PP-H 1)*
- **3** · Couvercle (PP-H 1)
- 4 · Support du filtre (PP-H 1)
- **5 A-B** · Joint torique (EPDM ou FPM 1)*
- **5 C** · Joint torique (EPDM ou FPM 2)*
- 6 · Rondelle (PP-H 1)
- 7 · Écrou union (PP-H 1)
- 8 · Anneau fendu (PP-H 1)
- 9 · Joint d'étanchéité torique du collet (EPDM ou FPM 2)*
- 10 · Manchon (PP-H 2)*
- 11 · Écrou union (PP-H 2)

Le matériau du composant et la quantité fournie sont indiqués entre parenthèses

^{*} Pièces de rechange

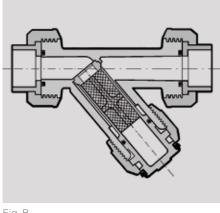
DÉMONTAGE

DN 15 à 50 (fig. A) - DN 100 (fig. C)

- 1) Isoler le filtre du flux du liquide et vider l'installation en amont de celui-ci.
- 2) Dévisser l'écrou (7) et séparer le couvercle-support (3-4) du corps (1).
- 3) Dégager la rondelle du fond (6) du couvercle-support (3-4).
- 4) Retirer l'anneau fendu (8) et séparer l'écrou (7) du couvercle (3).
- 5) Retirer le joint torique (5).

DN 65÷80 (fig. B)

- 1) Isoler le filtre du flux du liquide et vider l'installation en amont de celui-ci.
- 2) Dévisser le couvercle (3) et le séparer du corps (1).
- 3) Dégager le support (4) du couvercle
- 4) Dégager la rondelle (6) du couvercle (3) et le joint torique (5) de son logement dans le corps.


MONTAGE

DN 15 à 50 (fig. A) - DN 100 (fig. C)

- 1) Insérer le joint torique (5) dans son logement sur le couvercle (3).
- 2) Enfiler le couvercle (3) dans l'écrou (7) et fixer les deux composants au moyen de l'anneau fendu (8).
- 3) Enfiler le tamis (2) dans le (3-4) et la fixer avec la rondelle de fond (6).
- 4) Insérer le couvercle (3) dans le corps (1) et visser l'écrou union (7).

DN 65÷80 (fig. B)

- Insérer le joint torique (5) dans le corps (1).
- Insérer la rondelle (6) dans le couvercle (3).
- 3) Insérer le filtre (2) dans son support (4).
- 4) Insérer le support (4) dans le couvercle (3).
- 5) Visser le couvercle (3) dans le corps (1).

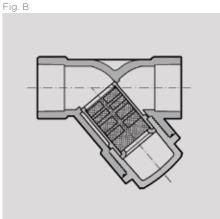
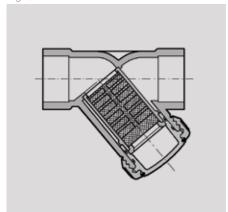



Fig. C

Fia. A

Remarque : les opérations d'entretien peuvent être effectuées avec le corps de vanne installé. Pendant les opérations de montage, il est conseillé de lubrifier les joints en élastomère. À ce propos, il est rappelé que les huiles minérales ne sont pas appropriées, car elles sont agressives pour le caoutchouc EPDM.

INSTALLAT

Le filtre peut être installé dans n'importe quelle position, en veillant à ce que la flèche imprimée sur le corps indique la direction du fluide et que la partie filtrante soit tournée vers le bas. Pour éviter d'abîmer le filtre, il convient d'insérer sur l'installation des appareillages visant à empêcher le flux de changer de sens.

DN 15 à 50 (fig. A)

- 1) Dévisser les écrous union (11) et les insérer sur les morceaux de tuyau.
- 2) Procéder au soudage thermique des manchons (10) sur les morceaux de tuyau.
- 3) Placer le filtre entre les manchons.
- 4) Serrer les écrous union.

DN 65÷80 (fig. B) et DN 100 (fig. C)

Le raccordement doit être effectué en soudant directement le tuyau dans l'emboîture femelle du corps.

AVERTISSEMENTS

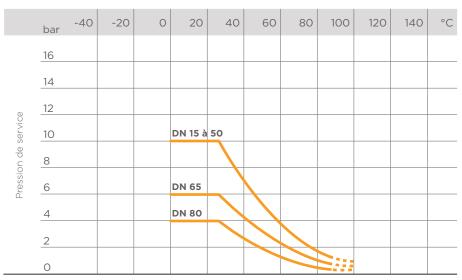
- Vérifier toujours la propreté des éléments filtrants.

VR DN 15 À 80

∨R **DN 15 À 80**

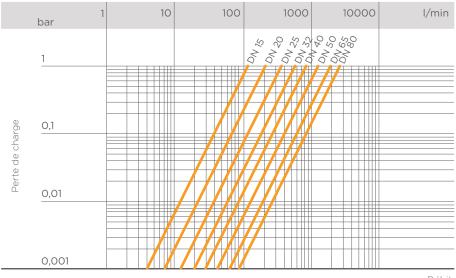
Le VR est un clapet de retenue à siège incliné à piston en PP-H chargé dont la fonction est de n'autoriser le passage du fluide que dans une seule direction.

CLAPET DE RETENUE


- Système d'assemblage par soudage, par vissage et par bridage
- · Aucune partie métallique en contact avec le fluide.
- Piston doté d'un lest pour pouvoir travailler avec des fluides à forte densité.
- Pertes de charge limitées. L'étanchéité hermétique n'exige que des contre-pressions minimes.
- Compatibilité du matériau du clapet (PP-H) avec le transport d'eau, eau potable et autres substances alimentaires selon les réglementations en vigueur
- Possibilité d'effectuer l'entretien avec le corps de clapet installé

Spécifications techniques	S				
Fabrication	Clapet de retenue à siège incliné				
Gamme de dimensions	DN 15 à 80				
Pression nominale	DN 15 à 50 : PN 10 pour de l'eau à 20 °C DN 65 : PN 6 pour de l'eau à 20 °C DN 80 : PN 4 pour de l'eau à 20 °C				
Plage de température	0 °C à 100 °C				
Standard d'accouplement	Soudage : EN ISO 15494. Compatibles avec les tuyaux selon EN ISO 15494				
	Vissage : ISO 228-1, DIN 2999				
	Bridage : ISO 7005-1, EN 1092-1, EN ISO 15494, EN 558-1, DIN 2501, ANSI B16.5 cl.150				
Références normatives	Critères de fabrication : EN ISO 16137, EN ISO 15494				
	Méthodes et conditions requises pour les tests : ISO 9393				
	Critères d'installation : DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318				
Matériaux du clapet	PP-H				
Matériaux d'étanchéité	EPDM ou FPM				

DONNÉES TECHNIQUES


VARIATION DE LA PRESSION EN FONCTION DE LA TEMPÉRATURE

Pour l'eau et les fluides non dangereux vis-à-vis desquels le matériau est considéré comme étant CHIMIQUEMENT RÉSISTANT. Dans les autres cas, une diminution de la pression nominale PN est nécessaire (espérance de vie de 25 ans, facteur de sécurité inclus).

Température de service

DIAGRAMME DES PERTES DE CHARGE

Débit

COEFFICIENT DE DÉBIT K_v100

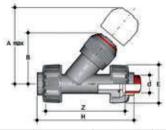
Par coefficient de débit K_v 100, on entend le débit Q en litres par minute d'eau à 20 °C, qui génère une perte de charge Δp = 1 bar pour une position déterminée du clapet.

Le tableau indique les valeurs K_v100 pour un clapet complètement ouvert.

DN	15	20	25	32	40	50	65	80
K _v 100	110	205	375	560	835	1300	1950	2600

PRESSIONS MINIMALES POUR L'OUVERTURE DU CLAPET

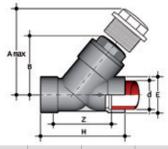
DN	15	20	25	32	40	50	65	80
bar	0,008	0,009	0,014	0,017	0,018	0,021	0,022	0,022


PRESSIONS MINIMES POUR L'ÉTANCHÉITÉ (PISTON EN POSITION FERMÉE)

Les données se réfèrent à des joints non usés.

DN	15	20	25	32	40	50	65	80
mm H ₂ O	150	200	350	350	350	350	350	350

Les données contenues dans cette brochure sont fournies en toute bonne foi. FIP n'assume aucune responsabilité pour les données qui ne dérivent pas directement des normes internationales. FIP se réserve le droit d'apporter toute modification aux produits présentés dans cette brochure. L'installation et l'entretien doivent être effectués par du personnel qualifié.


DIMENSIONS

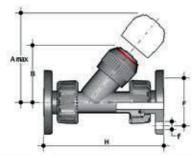
VRUIM

Clapet de retenue à embouts union femelles pour soudage dans l'emboîture, série métrique


d	DN	PN	A max	В	Е	Н	Z	g	Code EPDM	Code FPM
20	15	10	125	71	55	138	109	165	VRUIM020E	VRUIM020F
25	20	10	145	83	65	157	125	227	VRUIM025E	VRUIM025F
32	25	10	165	94	74	179	143	380	VRUIM032E	VRUIM032F
40	32	10	190	109	86	205	164	645	VRUIM040E	VRUIM040F
50	40	10	210	119	99	244	197	915	VRUIM050E	VRUIM050F
63	50	10	240	143	120	294	239	1555	VRUIM063E	VRUIM063F

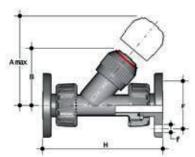
VRIM

Clapet de retenue à embouts femelles pour soudage dans l'emboîture, série métrique


C	DN	PN	A max	В	Е	Н	K	Z	g	Code EPDM	Code FPM
75	65	6	300	176	103	241	96	179	2450	VRIM075E	VRIM075F
90	80	4	325	192	115	260	105	189	3130	VRIM090E	VRIM090F

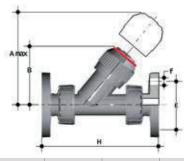
VDIIEM

Clapet de retenue à embouts union femelles, taraudage cylindrique gaz


d	DN	PN	A max	В	Е	Н	Z	g	Code EPDM	Code FPM
1/2"	15	10	125	71	55	143	113	165	VRUFM012E	VRUFM012F
3/4"	20	10	145	83	65	160	127	227	VRUFM034E	VRUFM034F
1"	25	10	165	94	74	183	145	380	VRUFM100E	VRUFM100F
1" 1/4	32	10	190	109	86	214	171	645	VRUFM114E	VRUFM114F
1" 1/2	40	10	210	119	99	235	192	915	VRUFM112E	VRUFM112F
2"	50	10	240	143	120	285	234	1555	VRUFM200E	VRUFM200F

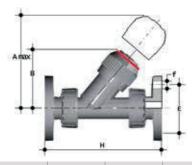
VRUOM

Clapet de retenue avec embouts union et brides fixes, perçage EN/ISO/DIN PN10/16.


d	DN	PN	A max	В	F	f	Н	g	Code EPDM	Code FPM
20	15	10	125	72	65	14	163	265	VRUOM012E	VRUOM012F
25	20	10	145	84	75	14	193	327	VRUOM034E	VRUOM034F
32	25	10	165	95	85	14	211	480	VRUOM100E	VRUOM100F
40	32	10	190	111	100	18	244	795	VRUOM114E	VRUOM114F
50	40	10	210	120	110	18	277	1065	VRUOM112E	VRUOM112F
63	50	10	240	139	125	18	331	1705	VRUOM200E	VRUOM200F

VRUOAM

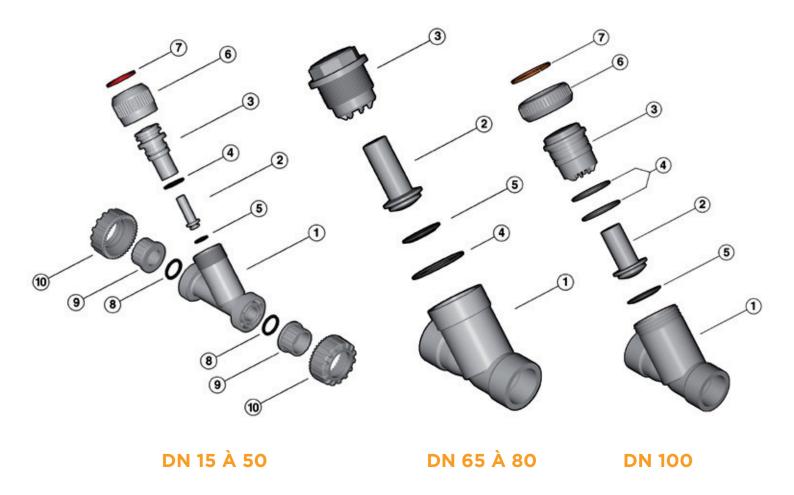
Clapet de retenue avec embouts union et brides fixes, perçage ANSI B16.5 cl.150 #FF


d	DN	PN	A max	В	F	f	Н	g	Code EPDM	Code FPM
1/2"	15	10	125	72	60	16	175	265	VRUOAM012E	VRUOAM012F
3/4"	20	10	145	84	70	16	214	327	VRUOAM034E	VRUOAM034F
1"	25	10	165	95	79	16	237	480	VRUOAM100E	VRUOAM100F
1" 1/4	32	10	190	111	89	16	253	795	VRUOAM114E	VRUOAM114F
1" 1/2	40	10	210	120	98	16	289	1065	VRUOAM112E	VRUOAM112F
2"	50	10	240	139	121	19	333	1705	VRUOAM200E	VRUOAM200F

VROM

Clapet de retenue à brides fixes, perçage EN/ISO/DIN PN10/16.

d	DN	PN	A max	В	F	f	Н	g	Code EPDM	Code FPM
75	65	6	300	176	145	18	356	5990	VROM075E	VROM075F
90	80	4	325	192	160	18	404	7230	VROM090E	VROM090F


VROAM

Clapet de retenue à brides fixes, perçage ANSI B16.5 cl.150 #FF

d - Taille	DN	PN	A max	В	F	f	Н	g	Code EPDM	Code FPM
75 - 2" 1/2	65	6	300	176	139,7	18	356	5595	VROAM075E	VROAM075F
90 - 3"	80	4	325	192	152,4	18	404	6385	VROAM090E	VROAM090F

COMPOSANTS

VUE ÉCLATÉE

- 1 · Corps (PP-H 1)
- 2 · Piston (PP-H 1)
- 3 · Couvercle (PP-H 1)
- **4 C** · Joint torique (EPDM ou FPM 1/2)*
- 5 · Joint plat du piston (EPDM ou FPM - 1)*
- 6 · Écrou union (PP-H 1)
- 7 · Anneau fendu (PP-H 1)
- 8 · Joint d'étanchéité torique du collet (EPDM ou FPM 2)*
- 9 · Manchon (PP-H 2)*
- 10 · Écrou union (PP-H 2)

Le matériau du composant et la quantité fournie sont indiqués entre parenthèses

^{*} Pièces de rechange

DÉMONTAGE

DN 15 à 50 (fig. A)

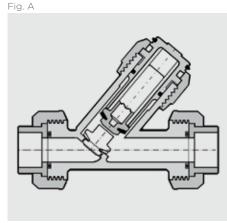
- 1) Isoler le clapet du flux du liquide.
- 2) Dévisser l'écrou union (6) et séparer le couvercle (3) du corps (1).
- 3) Dégager le piston (2) et ôter le joint plat (5).
- 4) Retirer l'anneau ouvert (7) et séparer l'écrou union (6) du couvercle (3).
- 5) Retirer le joint torique (4).

DN 65 à 80 (fig. B)

- 1) Isoler le clapet du flux du liquide.
- 2) Dévisser le couvercle (3) du corps (1).
- 3) Retirer le joint torique (4) dans son logement dans le corps (1).
- 4) Dégager le piston (2) et le joint plat respectif (5).

MONTAGE

DN 15 à 50 (fig. A)


- 1) Insérer le joint torique (4) dans son logement dans le couvercle (3).
- Enfiler le couvercle (3) dans l'écrou union (6) et fixer les deux composants à l'aide de l'anneau fendu (7).
- 3) Enfiler le piston (2) avec son joint plat (5) sur le couvercle (3), puis le couvercle sur le corps (1).
- 4) Visser l'écrou union (6) sur le corps (1).

DN 65 à 80 (fig. B)

- 1) Enfiler le piston (2) et son joint plat (5) dans le couvercle (3).
- 2) Insérer le joint torique du couvercle (4) sur le corps (1)
- 3) Visser le couvercle (3) sur le corps (1).

Remarque: les opérations d'entretien peuvent être effectuées avec le corps de clapet installé. Pendant les opérations de montage, il est conseillé de lubrifier les joints en élastomère. À ce propos, il est rappelé que les huiles minérales, agressives pour le caoutchouc EPDM, sont déconseillées.

INSTALLATION

- 1) Le clapet de retenue peut être installé sur des tuyaux verticaux ou horizontaux. Le couvercle (3) devra toutefois être toujours tourné vers le haut, dans la mesure où le piston fonctionne par gravité.
- 2) Au cas où le clapet serait installé à la verticale, si l'assemblage est fait par collage, s'assurer que la colle ne coule pas à l'intérieur du corps, ce qui endommagerait le siège de tenue.
- 3) Orienter le clapet de sorte que la flèche imprimée sur le corps indique la direction du fluide.

\bigwedge

AVERTISSEMENTS

- Ne pas utiliser d'air comprimé ou d'autres gaz pour l'essai des lignes thermoplastiques.

LÉGENDE ABRÉVIATIONS

C code de référence joint torique

diamètre extérieur nominal en mm

DN diamètre nominal intérieur en mm

EPDM élastomère éthylène-propylène

FPM (FKM) fluoroélastomère

9 poids en grammes

HIPVC PVC haut impact

K clé du couvercle

Kg poids en kilogrammes

L longueur en mètres

M boulons

MRS valeur minimale garantie de la charge de rupture du matériau à 20 °C - eau - pendant 50 ans de service

nombre trous brides

NBR élastomère butadiène-acrylonitrile

PA-GR polyamide renforcé fibres de verre

PBT polybutylène téréphtalate

PE polyéthylène

PN pression nominale en bars (pression de service maximale dans l'eau à 20° C)

POM résine polyacétalique

PP-GR polypropylène renforcé avec des fibres de verre

PP-H polypropylène homopolymère

PVC-C polychlorure de vinyle surchloré

PVC-U polychlorure de vinyle non plastifié

PVDF polyfluorure de vinylidène

PTFE polytétrafluoroéthylène

R dimension nominale du vissage en pouces

S série des épaisseurs = $\frac{SDR-1}{2}$

S épaisseur tuyaux en millimètres

SDR rapport de dimension standard = d / s

Sp épaisseur brides sur vannes en version bridée

U nombre trous brides pour vanne en version bridée

NOTES

NOTES

Z.I. Route de Béziers – 8 avenue du Mas de Garric – 34140 Mèze – France Tel +33 (0)467 51 63 30 – Fax +33 (0)467 43 61 43 RCS Montpellier 787 050 103